Zinman Guy E, Zhong Shan, Bar-Joseph Ziv
Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
BMC Syst Biol. 2011 Aug 23;5:134. doi: 10.1186/1752-0509-5-134.
Orthologous genes are highly conserved between closely related species and biological systems often utilize the same genes across different organisms. However, while sequence similarity often implies functional similarity, interaction data is not well conserved even for proteins with high sequence similarity. Several recent studies comparing high throughput data including expression, protein-protein, protein-DNA, and genetic interactions between close species show conservation at a much lower rate than expected.
In this work we collected comprehensive high-throughput interaction datasets for four model organisms (S. cerevisiae, S. pombe, C. elegans, and D. melanogaster) and carried out systematic analyses in order to explain the apparent lower conservation of interaction data when compared to the conservation of sequence data. We first showed that several previously proposed hypotheses only provide a limited explanation for such lower conservation rates. We combined all interaction evidences into an integrated network for each species and identified functional modules from these integrated networks. We then demonstrate that interactions that are part of functional modules are conserved at much higher rates than previous reports in the literature, while interactions that connect between distinct functional modules are conserved at lower rates.
We show that conservation is maintained between species, but mainly at the module level. Our results indicate that interactions within modules are much more likely to be conserved than interactions between proteins in different modules. This provides a network based explanation to the observed conservation rates that can also help explain why so many biological processes are well conserved despite the lower levels of conservation for the interactions of proteins participating in these processes.Accompanying website: http://www.sb.cs.cmu.edu/CrossSP.
直系同源基因在亲缘关系密切的物种之间高度保守,并且生物系统常常在不同生物体中利用相同的基因。然而,虽然序列相似性通常意味着功能相似性,但即使对于具有高度序列相似性的蛋白质,其相互作用数据也没有得到很好的保守。最近的几项研究比较了高通量数据,包括近缘物种之间的表达、蛋白质-蛋白质、蛋白质-DNA和遗传相互作用,结果显示其保守率远低于预期。
在这项工作中,我们收集了四种模式生物(酿酒酵母、粟酒裂殖酵母、秀丽隐杆线虫和黑腹果蝇)的全面高通量相互作用数据集,并进行了系统分析,以解释与序列数据的保守性相比,相互作用数据明显较低的保守性。我们首先表明,之前提出的几个假设只能对这种较低的保守率提供有限的解释。我们将所有相互作用证据整合到每个物种的一个综合网络中,并从这些综合网络中识别出功能模块。然后我们证明,作为功能模块一部分的相互作用的保守率比文献中之前的报道要高得多,而连接不同功能模块之间的相互作用的保守率则较低。
我们表明物种之间的保守性是存在的,但主要是在模块水平上。我们的结果表明,模块内的相互作用比不同模块中的蛋白质之间的相互作用更有可能被保守。这为观察到的保守率提供了一个基于网络的解释,也有助于解释为什么尽管参与这些过程的蛋白质相互作用的保守水平较低,但如此多的生物过程却得到了很好的保守。