Suppr超能文献

高通量相互作用数据揭示了枢纽蛋白的度保守性。

High throughput interaction data reveals degree conservation of hub proteins.

作者信息

Fox A, Taylor D, Slonim D K

机构信息

Department of Computer Science, Tufts University, 161 College Avenue, Medford, MA 02155, USA.

出版信息

Pac Symp Biocomput. 2009:391-402. doi: 10.1142/9789812836939_0037.

Abstract

Research in model organisms relies on unspoken assumptions about the conservation of protein-protein interactions across species, yet several analyses suggest such conservation is limited. Fortunately, for many purposes the crucial issue is not global conservation of interactions, but preferential conservation of functionally important ones. An observed bias towards essentiality in highly-connected proteins implies the functional importance of such "hubs". We therefore define the notion of degree-conservation and demonstrate that hubs are preferentially degree-conserved. We show that a protein is more likely to be a hub if it has a high-degree ortholog, and that once a protein becomes a hub, it tends to remain so. We also identify a positive correlation between the average degree of a protein and the conservation of its interaction partners, and we find that the conservation of individual hub interactions is surprisingly high. Our work has important implications for prediction of protein function, computational inference of PPIs, and interpretation of data from model organisms.

摘要

对模式生物的研究依赖于关于蛋白质-蛋白质相互作用在物种间保守性的一些不言而喻的假设,然而多项分析表明这种保守性是有限的。幸运的是,对于许多目的而言,关键问题并非相互作用的全局保守性,而是功能重要的相互作用的优先保守性。在高度连接的蛋白质中观察到的对必需性的偏向意味着这类“枢纽”的功能重要性。因此,我们定义了度保守性的概念,并证明枢纽蛋白优先具有度保守性。我们表明,如果一个蛋白质有一个高度同源的直系同源物,那么它更有可能成为一个枢纽蛋白,并且一旦一个蛋白质成为枢纽蛋白,它往往会一直保持这种状态。我们还发现蛋白质的平均度与其相互作用伙伴的保守性之间存在正相关,并且我们发现单个枢纽相互作用的保守性出奇地高。我们的工作对蛋白质功能的预测、蛋白质-蛋白质相互作用的计算推断以及模式生物数据的解释具有重要意义。

相似文献

1
High throughput interaction data reveals degree conservation of hub proteins.
Pac Symp Biocomput. 2009:391-402. doi: 10.1142/9789812836939_0037.
2
Evolution and topology in the yeast protein interaction network.
Genome Res. 2004 Jul;14(7):1310-4. doi: 10.1101/gr.2300204.
3
Disorder and sequence repeats in hub proteins and their implications for network evolution.
J Proteome Res. 2006 Nov;5(11):2985-95. doi: 10.1021/pr060171o.
4
Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes.
PLoS Comput Biol. 2006 Aug 4;2(8):e100. doi: 10.1371/journal.pcbi.0020100. Epub 2006 Jun 23.
5
Inferring protein-protein interactions through high-throughput interaction data from diverse organisms.
Bioinformatics. 2005 Aug 1;21(15):3279-85. doi: 10.1093/bioinformatics/bti492. Epub 2005 May 19.
6
Systems biology approach reveals possible evolutionarily conserved moonlighting functions for enolase.
Comput Biol Chem. 2015 Oct;58:1-8. doi: 10.1016/j.compbiolchem.2015.04.010. Epub 2015 Apr 21.
7
Analysis of septins across kingdoms reveals orthology and new motifs.
BMC Evol Biol. 2007 Jul 1;7:103. doi: 10.1186/1471-2148-7-103.
8
Evolution of the Rab family of small GTP-binding proteins.
J Mol Biol. 2001 Nov 2;313(4):889-901. doi: 10.1006/jmbi.2001.5072.
9
IsoBase: a database of functionally related proteins across PPI networks.
Nucleic Acids Res. 2011 Jan;39(Database issue):D295-300. doi: 10.1093/nar/gkq1234.
10
Prediction of protein-protein interactions using protein signature profiling.
Genomics Proteomics Bioinformatics. 2007 Dec;5(3-4):177-86. doi: 10.1016/S1672-0229(08)60005-4.

引用本文的文献

1
Topsy-Turvy: integrating a global view into sequence-based PPI prediction.
Bioinformatics. 2022 Jun 24;38(Suppl 1):i264-i272. doi: 10.1093/bioinformatics/btac258.
2
Molecular dysexpression in gastric cancer revealed by integrated analysis of transcriptome data.
Oncol Lett. 2017 May;13(5):3177-3185. doi: 10.3892/ol.2017.5798. Epub 2017 Mar 3.
3
What evidence is there for the homology of protein-protein interactions?
PLoS Comput Biol. 2012;8(9):e1002645. doi: 10.1371/journal.pcbi.1002645. Epub 2012 Sep 20.
4
Biological interaction networks are conserved at the module level.
BMC Syst Biol. 2011 Aug 23;5:134. doi: 10.1186/1752-0509-5-134.
6
Connectedness of PPI network neighborhoods identifies regulatory hub proteins.
Bioinformatics. 2011 Apr 15;27(8):1135-42. doi: 10.1093/bioinformatics/btr099. Epub 2011 Mar 2.
7
Deciphering peculiar protein-protein interacting modules in Deinococcus radiodurans.
Biol Direct. 2009 Apr 8;4:12. doi: 10.1186/1745-6150-4-12.

本文引用的文献

1
Estimating node degree in bait-prey graphs.
Bioinformatics. 2008 Jan 15;24(2):218-24. doi: 10.1093/bioinformatics/btm565. Epub 2007 Nov 19.
2
4
How complete are current yeast and human protein-interaction networks?
Genome Biol. 2006;7(11):120. doi: 10.1186/gb-2006-7-11-120.
5
Stratus not altocumulus: a new view of the yeast protein interaction network.
PLoS Biol. 2006 Oct;4(10):e317. doi: 10.1371/journal.pbio.0040317.
6
Protein-protein interactions more conserved within species than across species.
PLoS Comput Biol. 2006 Jul 21;2(7):e79. doi: 10.1371/journal.pcbi.0020079. Epub 2006 May 18.
8
Estimating and improving protein interaction error rates.
Proc IEEE Comput Syst Bioinform Conf. 2004:216-23. doi: 10.1109/csb.2004.1332435.
9
Stable evolutionary signal in a yeast protein interaction network.
BMC Evol Biol. 2006 Jan 30;6:8. doi: 10.1186/1471-2148-6-8.
10
BioGRID: a general repository for interaction datasets.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9. doi: 10.1093/nar/gkj109.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验