Suppr超能文献

通过靶向细菌行为来增强现有抗生素的效用?

Enhancing the utility of existing antibiotics by targeting bacterial behaviour?

机构信息

Molecular Microbiology Research Laboratory, Institute of Pharmaceutical Sciences, King's College London, London, UK.

出版信息

Br J Pharmacol. 2012 Feb;165(4):845-57. doi: 10.1111/j.1476-5381.2011.01643.x.

Abstract

The discovery of novel classes of antibiotics has slowed dramatically. This has occurred during a time when the appearance of resistant strains of bacteria has shown a substantial increase. Concern is therefore mounting over our ability to continue to treat infections in an effective manner using the antibiotics that are currently available. While ongoing efforts to discover new antibiotics are important, these must be coupled with strategies that aim to maintain as far as possible the spectrum of activity of existing antibiotics. In many instances, the resistance to antibiotics exhibited by bacteria in chronic infections is mediated not by direct resistance mechanisms, but by the adoption of modes of growth that confer reduced susceptibility. These include the formation of biofilms and the occurrence of subpopulations of 'persister' cells. As our understanding of these processes has increased, a number of new potential drug targets have been revealed. Here, advances in our ability to disrupt these systems that confer reduced susceptibility, and in turn increase the efficacy of antibiotic therapy, are discussed.

摘要

新型抗生素的发现速度已经大大减缓。而在这段时间里,细菌耐药菌株的出现率显著增加。因此,人们越来越担心我们是否有能力继续使用现有的抗生素有效地治疗感染。虽然发现新抗生素的持续努力很重要,但这些努力必须与旨在尽可能维持现有抗生素的活性谱的策略相结合。在许多情况下,慢性感染中细菌对抗生素的耐药性不是由直接耐药机制介导的,而是通过采用降低敏感性的生长方式来实现的。这些方式包括生物膜的形成和“持久细胞”亚群的出现。随着我们对这些过程的了解不断增加,已经揭示了一些新的潜在药物靶点。在这里,讨论了破坏这些降低敏感性的系统并提高抗生素治疗效果的能力的进展。

相似文献

1
Enhancing the utility of existing antibiotics by targeting bacterial behaviour?
Br J Pharmacol. 2012 Feb;165(4):845-57. doi: 10.1111/j.1476-5381.2011.01643.x.
2
Biologically inspired strategies for combating bacterial biofilms.
Curr Opin Pharmacol. 2013 Oct;13(5):699-706. doi: 10.1016/j.coph.2013.07.004. Epub 2013 Jul 18.
3
Hijacking the Bacterial Circuitry of Biofilm Processes via Chemical "Hot-Wiring": An Under-explored Avenue for Therapeutic Development.
ACS Infect Dis. 2019 Jun 14;5(6):789-795. doi: 10.1021/acsinfecdis.9b00104. Epub 2019 Apr 19.
4
Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition.
Appl Microbiol Biotechnol. 2018 Mar;102(5):2063-2073. doi: 10.1007/s00253-018-8787-x. Epub 2018 Feb 1.
5
Multidrug tolerance of biofilms and persister cells.
Curr Top Microbiol Immunol. 2008;322:107-31. doi: 10.1007/978-3-540-75418-3_6.
6
Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies.
Future Microbiol. 2013 Jul;8(7):877-86. doi: 10.2217/fmb.13.58.
7
Virulence-targeted Antibacterials: Concept, Promise, and Susceptibility to Resistance Mechanisms.
Chem Biol Drug Des. 2015 Oct;86(4):379-99. doi: 10.1111/cbdd.12517. Epub 2015 Feb 6.
8
Quorum-Sensing Systems as Targets for Antivirulence Therapy.
Trends Microbiol. 2018 Apr;26(4):313-328. doi: 10.1016/j.tim.2017.10.005. Epub 2017 Nov 10.
9
Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria.
Crit Rev Biochem Mol Biol. 2014 Mar-Apr;49(2):91-101. doi: 10.3109/10409238.2013.869543. Epub 2013 Dec 13.
10
Novel approaches to combat bacterial biofilms.
Curr Opin Pharmacol. 2014 Oct;18:61-8. doi: 10.1016/j.coph.2014.09.005. Epub 2014 Sep 23.

引用本文的文献

1
Quorum Sensing: Not Just a Bridge Between Bacteria.
Microbiologyopen. 2025 Mar;14(1):e70016. doi: 10.1002/mbo3.70016.
2
Combating biofilm-associated Klebsiella pneumoniae infections using a bovine microbial enzyme.
NPJ Biofilms Microbiomes. 2024 Nov 5;10(1):119. doi: 10.1038/s41522-024-00593-7.
4
Antibiotic-free antimicrobial poly (methyl methacrylate) bone cements: A state-of-the-art review.
World J Orthop. 2022 Apr 18;13(4):339-353. doi: 10.5312/wjo.v13.i4.339.
5
Membrane-Active Antibacterial Agents Based on Calix[4]arene Derivatives: Synthesis and Biological Evaluation.
Front Chem. 2022 Feb 8;10:816741. doi: 10.3389/fchem.2022.816741. eCollection 2022.
6
Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics.
Antibiotics (Basel). 2022 Feb 4;11(2):200. doi: 10.3390/antibiotics11020200.
7
Amixicile, a novel strategy for targeting oral anaerobic pathogens.
Sci Rep. 2017 Sep 5;7(1):10474. doi: 10.1038/s41598-017-09616-0.
8
Antibiofilm Activity and Synergistic Inhibition of Staphylococcus aureus Biofilms by Bactericidal Protein P128 in Combination with Antibiotics.
Antimicrob Agents Chemother. 2016 Nov 21;60(12):7280-7289. doi: 10.1128/AAC.01118-16. Print 2016 Dec.
9
The changing face of asthma and its relation with microbes.
Trends Microbiol. 2015 Jul;23(7):408-18. doi: 10.1016/j.tim.2015.03.005. Epub 2015 Mar 31.
10
Bactericidal efficiency and modes of action of the novel antimicrobial peptide T9W against Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2015;59(6):3008-17. doi: 10.1128/AAC.04830-14. Epub 2015 Mar 9.

本文引用的文献

1
Novel concepts in evaluating antimicrobial therapy for bacterial lung infections in patients with cystic fibrosis.
J Cyst Fibros. 2011 Dec;10(6):387-400. doi: 10.1016/j.jcf.2011.06.014. Epub 2011 Jul 19.
2
Antibiotics in the clinical pipeline in 2011.
J Antibiot (Tokyo). 2011 Jun;64(6):413-25. doi: 10.1038/ja.2011.44. Epub 2011 May 18.
3
Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies.
J Med Microbiol. 2011 Jun;60(Pt 6):699-709. doi: 10.1099/jmm.0.030932-0. Epub 2011 Apr 1.
4
Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo.
Antimicrob Agents Chemother. 2011 Jun;55(6):2655-61. doi: 10.1128/AAC.00045-11. Epub 2011 Mar 21.
5
Novel classes of antibiotics or more of the same?
Br J Pharmacol. 2011 May;163(1):184-94. doi: 10.1111/j.1476-5381.2011.01250.x.
7
Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms.
Microb Biotechnol. 2009 May;2(3):370-8. doi: 10.1111/j.1751-7915.2009.00098.x. Epub 2009 Mar 13.
8
Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist.
Microb Biotechnol. 2009 Jan;2(1):62-74. doi: 10.1111/j.1751-7915.2008.00060.x. Epub 2008 Oct 13.
9
Thiazolidione derivatives as novel antibiofilm agents: design, synthesis, biological evaluation, and structure-activity relationships.
Eur J Med Chem. 2011 Mar;46(3):819-24. doi: 10.1016/j.ejmech.2010.12.014. Epub 2010 Dec 21.
10
Pseudomonas aeruginosa fosfomycin resistance mechanisms affect non-inherited fluoroquinolone tolerance.
J Med Microbiol. 2011 Mar;60(Pt 3):329-336. doi: 10.1099/jmm.0.019703-0. Epub 2011 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验