Suppr超能文献

基于主成分分析的肺部运动模型。

On a PCA-based lung motion model.

机构信息

Department of Radiation Oncology and Center for Advanced Radiotherapy Technologies, University of California San Diego, 3855 Health Sciences Dr, La Jolla, CA 92037-0843, USA.

出版信息

Phys Med Biol. 2011 Sep 21;56(18):6009-30. doi: 10.1088/0031-9155/56/18/015. Epub 2011 Aug 24.

Abstract

Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1 mm (0.7 ± 0.1 mm). When a single artificial internal marker was used to derive the lung motion, the average 3D error was found to be within 2 mm (1.8 ± 0.3 mm) through comprehensive statistical analysis. The optimal number of PCA coefficients needs to be determined on a patient-by-patient basis and two PCA coefficients seem to be sufficient for accurate modeling of the lung motion for most patients. In conclusion, we have presented thorough theoretical analysis and clinical validation of the PCA lung motion model. The feasibility of deriving the entire lung motion using a single marker has also been demonstrated on clinical data using a simulation approach.

摘要

呼吸诱导的器官运动是肺癌放射治疗的主要不确定因素之一,准确地模拟肺运动至关重要。到目前为止,大多数工作都集中在单点运动(通常是肿瘤质心)的研究上,而对整个肺运动的建模工作却很少。受 Zhang 等人(2007 年,Med. Phys. 34 4772-81)工作的启发,我们相信可以基于主成分分析(PCA)准确地对整个肺运动的时空关系进行建模,然后可以使用整个肺的稀疏子集(例如植入标记)来驱动整个肺的运动(包括肿瘤)。这项工作的目标有两个。首先,我们旨在了解 PCA 对建模肺运动有效的根本原因,并找到用于准确建模肺运动的最佳 PCA 系数数量。我们试图在理论框架和实际临床数据的背景下解决上述重要问题。其次,我们提出了一种使用基于 PCA 模型的单个内部标记来推导整个肺运动的新方法。这项工作的主要结果如下。我们推导出了一个重要的性质,揭示了 PCA 模型所施加的隐式正则化。然后,我们使用两个数学呼吸体模和 8 个肺癌患者的 11 个临床 4DCT 扫描研究了该模型。对于具有余弦和余弦的偶数幂(2n)运动的数学体模,我们证明了 2 和 2n PCA 系数和特征向量将分别完全代表肺运动。此外,对于余弦体模,我们推导出了 PCA 运动模型和生理 5D 肺运动模型(Low 等人,2005 年,Int. J. Radiat. Oncol. Biol. Phys. 63 921-9)之间的等效条件。对于临床 4DCT 数据,我们展示了 PCA 模型的建模能力和泛化性能。使用 PCA 的平均 3D 建模误差在 1mm 以内(0.7 ± 0.1mm)。通过综合统计分析,当使用单个人工内部标记来推导肺运动时,发现平均 3D 误差在 2mm 以内(1.8 ± 0.3mm)。需要根据患者的情况确定最佳 PCA 系数数量,对于大多数患者来说,似乎需要两个 PCA 系数即可准确地对肺运动进行建模。总之,我们对 PCA 肺运动模型进行了全面的理论分析和临床验证。还通过模拟方法在临床数据上证明了使用单个标记来推导整个肺运动的可行性。

相似文献

1
On a PCA-based lung motion model.
Phys Med Biol. 2011 Sep 21;56(18):6009-30. doi: 10.1088/0031-9155/56/18/015. Epub 2011 Aug 24.
3
A method for volumetric imaging in radiotherapy using single x-ray projection.
Med Phys. 2015 May;42(5):2498-509. doi: 10.1118/1.4918577.
8
A novel deformable lung phantom with programably variable external and internal correlation.
Med Phys. 2019 May;46(5):1995-2005. doi: 10.1002/mp.13507. Epub 2019 Apr 22.
9
4D cone beam CT-based dose assessment for SBRT lung cancer treatment.
Phys Med Biol. 2016 Jan 21;61(2):554-68. doi: 10.1088/0031-9155/61/2/554. Epub 2015 Dec 18.
10
3D delivered dose assessment using a 4DCT-based motion model.
Med Phys. 2015 Jun;42(6):2897-907. doi: 10.1118/1.4921041.

引用本文的文献

7
Artificial intelligence-based motion tracking in cancer radiotherapy: A review.
J Appl Clin Med Phys. 2024 Nov;25(11):e14500. doi: 10.1002/acm2.14500. Epub 2024 Aug 28.
9
Real-time liver motion estimation via deep learning-based angle-agnostic X-ray imaging.
Med Phys. 2023 Nov;50(11):6649-6662. doi: 10.1002/mp.16691. Epub 2023 Sep 13.
10
A Pediatric Upper Airway Library to Evaluate Interpatient Variability of In Silico Aerosol Deposition.
AAPS PharmSciTech. 2023 Jul 31;24(6):162. doi: 10.1208/s12249-023-02619-3.

本文引用的文献

2
Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration.
IEEE Trans Med Imaging. 2011 Feb;30(2):251-65. doi: 10.1109/TMI.2010.2076299. Epub 2010 Sep 27.
5
Characterization of free breathing patterns with 5D lung motion model.
Med Phys. 2009 Nov;36(11):5183-9. doi: 10.1118/1.3246348.
6
Real-time profiling of respiratory motion: baseline drift, frequency variation and fundamental pattern change.
Phys Med Biol. 2009 Aug 7;54(15):4777-92. doi: 10.1088/0031-9155/54/15/009. Epub 2009 Jul 22.
7
Development of a geometry-based respiratory motion-simulating patient model for radiation treatment dosimetry.
J Appl Clin Med Phys. 2008 Jan 21;9(1):2700. doi: 10.1120/jacmp.v9i1.2700.
9
A duality based algorithm for TV-L1-optical-flow image registration.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):511-8. doi: 10.1007/978-3-540-75759-7_62.
10
Real-time prediction of respiratory motion based on local regression methods.
Phys Med Biol. 2007 Dec 7;52(23):7137-52. doi: 10.1088/0031-9155/52/23/024. Epub 2007 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验