Department of Radiation Oncology and Center for Advanced Radiotherapy Technologies, University of California San Diego, 3855 Health Sciences Dr, La Jolla, CA 92037-0843, USA.
Phys Med Biol. 2011 Sep 21;56(18):6009-30. doi: 10.1088/0031-9155/56/18/015. Epub 2011 Aug 24.
Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1 mm (0.7 ± 0.1 mm). When a single artificial internal marker was used to derive the lung motion, the average 3D error was found to be within 2 mm (1.8 ± 0.3 mm) through comprehensive statistical analysis. The optimal number of PCA coefficients needs to be determined on a patient-by-patient basis and two PCA coefficients seem to be sufficient for accurate modeling of the lung motion for most patients. In conclusion, we have presented thorough theoretical analysis and clinical validation of the PCA lung motion model. The feasibility of deriving the entire lung motion using a single marker has also been demonstrated on clinical data using a simulation approach.
呼吸诱导的器官运动是肺癌放射治疗的主要不确定因素之一,准确地模拟肺运动至关重要。到目前为止,大多数工作都集中在单点运动(通常是肿瘤质心)的研究上,而对整个肺运动的建模工作却很少。受 Zhang 等人(2007 年,Med. Phys. 34 4772-81)工作的启发,我们相信可以基于主成分分析(PCA)准确地对整个肺运动的时空关系进行建模,然后可以使用整个肺的稀疏子集(例如植入标记)来驱动整个肺的运动(包括肿瘤)。这项工作的目标有两个。首先,我们旨在了解 PCA 对建模肺运动有效的根本原因,并找到用于准确建模肺运动的最佳 PCA 系数数量。我们试图在理论框架和实际临床数据的背景下解决上述重要问题。其次,我们提出了一种使用基于 PCA 模型的单个内部标记来推导整个肺运动的新方法。这项工作的主要结果如下。我们推导出了一个重要的性质,揭示了 PCA 模型所施加的隐式正则化。然后,我们使用两个数学呼吸体模和 8 个肺癌患者的 11 个临床 4DCT 扫描研究了该模型。对于具有余弦和余弦的偶数幂(2n)运动的数学体模,我们证明了 2 和 2n PCA 系数和特征向量将分别完全代表肺运动。此外,对于余弦体模,我们推导出了 PCA 运动模型和生理 5D 肺运动模型(Low 等人,2005 年,Int. J. Radiat. Oncol. Biol. Phys. 63 921-9)之间的等效条件。对于临床 4DCT 数据,我们展示了 PCA 模型的建模能力和泛化性能。使用 PCA 的平均 3D 建模误差在 1mm 以内(0.7 ± 0.1mm)。通过综合统计分析,当使用单个人工内部标记来推导肺运动时,发现平均 3D 误差在 2mm 以内(1.8 ± 0.3mm)。需要根据患者的情况确定最佳 PCA 系数数量,对于大多数患者来说,似乎需要两个 PCA 系数即可准确地对肺运动进行建模。总之,我们对 PCA 肺运动模型进行了全面的理论分析和临床验证。还通过模拟方法在临床数据上证明了使用单个标记来推导整个肺运动的可行性。