Suppr超能文献

基于深度学习的角度无关 X 射线成像的实时肝脏运动估计。

Real-time liver motion estimation via deep learning-based angle-agnostic X-ray imaging.

机构信息

The Advanced Imaging and Informatics for Radiation Therapy (AIRT) Laboratory, Dallas, Texas, USA.

The Medical Artificial Intelligence and Automation (MAIA) Laboratory, Dallas, Texas, USA.

出版信息

Med Phys. 2023 Nov;50(11):6649-6662. doi: 10.1002/mp.16691. Epub 2023 Sep 13.

Abstract

BACKGROUND

Real-time liver imaging is challenged by the short imaging time (within hundreds of milliseconds) to meet the temporal constraint posted by rapid patient breathing, resulting in extreme under-sampling for desired 3D imaging. Deep learning (DL)-based real-time imaging/motion estimation techniques are emerging as promising solutions, which can use a single X-ray projection to estimate 3D moving liver volumes by solved deformable motion. However, such techniques were mostly developed for a specific, fixed X-ray projection angle, thereby impractical to verify and guide arc-based radiotherapy with continuous gantry rotation.

PURPOSE

To enable deformable motion estimation and 3D liver imaging from individual X-ray projections acquired at arbitrary X-ray scan angles, and to further improve the accuracy of single X-ray-driven motion estimation.

METHODS

We developed a DL-based method, X360, to estimate the deformable motion of the liver boundary using an X-ray projection acquired at an arbitrary gantry angle (angle-agnostic). X360 incorporated patient-specific prior information from planning 4D-CTs to address the under-sampling issue, and adopted a deformation-driven approach to deform a prior liver surface mesh to new meshes that reflect real-time motion. The liver mesh motion is solved via motion-related image features encoded in the arbitrary-angle X-ray projection, and through a sequential combination of rigid and deformable registration modules. To achieve the angle agnosticism, a geometry-informed X-ray feature pooling layer was developed to allow X360 to extract angle-dependent image features for motion estimation. As a liver boundary motion solver, X360 was also combined with priorly-developed, DL-based optical surface imaging and biomechanical modeling techniques for intra-liver motion estimation and tumor localization.

RESULTS

With geometry-aware feature pooling, X360 can solve the liver boundary motion from an arbitrary-angle X-ray projection. Evaluated on a set of 10 liver patient cases, the mean (± s.d.) 95-percentile Hausdorff distance between the solved liver boundary and the "ground-truth" decreased from 10.9 (±4.5) mm (before motion estimation) to 5.5 (±1.9) mm (X360). When X360 was further integrated with surface imaging and biomechanical modeling for liver tumor localization, the mean (± s.d.) center-of-mass localization error of the liver tumors decreased from 9.4 (± 5.1) mm to 2.2 (± 1.7) mm.

CONCLUSION

X360 can achieve fast and robust liver boundary motion estimation from arbitrary-angle X-ray projections for real-time imaging guidance. Serving as a surface motion solver, X360 can be integrated into a combined framework to achieve accurate, real-time, and marker-less liver tumor localization.

摘要

背景

实时肝脏成像受到成像时间短(数百毫秒内)的限制,难以满足快速患者呼吸带来的时间约束,从而导致所需的 3D 成像严重欠采样。基于深度学习(DL)的实时成像/运动估计技术作为一种很有前途的解决方案正在出现,它可以使用单个 X 射线投影通过解决变形运动来估计 3D 移动肝脏体积。然而,这些技术大多是为特定的、固定的 X 射线投影角度开发的,因此在验证和指导连续旋转机架的弧形放射治疗方面并不实用。

目的

能够从任意 X 射线扫描角度获得的单个 X 射线投影中进行可变形运动估计和 3D 肝脏成像,并进一步提高单 X 射线驱动运动估计的准确性。

方法

我们开发了一种基于深度学习的方法 X360,使用任意机架角度(角度无关)获取的 X 射线投影来估计肝脏边界的可变形运动。X360 将来自 4D-CT 计划的特定于患者的先验信息纳入其中,以解决欠采样问题,并采用变形驱动方法将先验肝脏表面网格变形为反映实时运动的新网格。通过在任意角度 X 射线投影中编码与运动相关的图像特征来解决肝脏网格运动,并通过刚性和可变形配准模块的顺序组合来解决。为了实现角度无关性,开发了一种基于几何信息的 X 射线特征池化层,允许 X360 为运动估计提取角度相关的图像特征。作为肝脏边界运动求解器,X360 还与先前开发的基于深度学习的光学表面成像和生物力学建模技术相结合,用于肝内运动估计和肿瘤定位。

结果

通过几何感知特征池化,X360 可以从任意角度的 X 射线投影中求解肝脏边界运动。在 10 例肝脏患者病例的评估中,求解的肝脏边界与“真实”边界之间的 95%百分位 Hausdorff 距离的平均值(±标准差)从 10.9(±4.5)mm(运动估计前)降低至 5.5(±1.9)mm(X360)。当 X360 进一步与表面成像和生物力学建模集成用于肝脏肿瘤定位时,肝脏肿瘤的质心定位误差的平均值(±标准差)从 9.4(±5.1)mm 降低至 2.2(±1.7)mm。

结论

X360 可以从任意角度的 X 射线投影中实现快速、稳健的肝脏边界运动估计,用于实时成像引导。作为表面运动求解器,X360 可以集成到组合框架中,以实现准确、实时、无标记的肝脏肿瘤定位。

相似文献

1
Real-time liver motion estimation via deep learning-based angle-agnostic X-ray imaging.
Med Phys. 2023 Nov;50(11):6649-6662. doi: 10.1002/mp.16691. Epub 2023 Sep 13.
2
Real-time liver tumor localization via combined surface imaging and a single x-ray projection.
Phys Med Biol. 2023 Mar 9;68(6):065002. doi: 10.1088/1361-6560/acb889.
6
4D-Precise: Learning-based 3D motion estimation and high temporal resolution 4DCT reconstruction from treatment 2D+t X-ray projections.
Comput Methods Programs Biomed. 2024 Jun;250:108158. doi: 10.1016/j.cmpb.2024.108158. Epub 2024 Apr 4.
7
Enhancing liver tumor localization accuracy by prior-knowledge-guided motion modeling and a biomechanical model.
Quant Imaging Med Surg. 2019 Jul;9(7):1337-1349. doi: 10.21037/qims.2019.07.04.
8
4D liver tumor localization using cone-beam projections and a biomechanical model.
Radiother Oncol. 2019 Apr;133:183-192. doi: 10.1016/j.radonc.2018.10.040. Epub 2018 Nov 14.
9

本文引用的文献

1
2D/3D Non-Rigid Image Registration via Two Orthogonal X-ray Projection Images for Lung Tumor Tracking.
Bioengineering (Basel). 2023 Jan 21;10(2):144. doi: 10.3390/bioengineering10020144.
2
Real-time liver tumor localization via combined surface imaging and a single x-ray projection.
Phys Med Biol. 2023 Mar 9;68(6):065002. doi: 10.1088/1361-6560/acb889.
3
Photon-Counting Detector CT: Key Points Radiologists Should Know.
Korean J Radiol. 2022 Sep;23(9):854-865. doi: 10.3348/kjr.2022.0377.
4
Image-to-Graph Convolutional Network for 2D/3D Deformable Model Registration of Low-Contrast Organs.
IEEE Trans Med Imaging. 2022 Dec;41(12):3747-3761. doi: 10.1109/TMI.2022.3194517. Epub 2022 Dec 2.
7
A review of artificial intelligence applications for motion tracking in radiotherapy.
J Med Imaging Radiat Oncol. 2021 Aug;65(5):596-611. doi: 10.1111/1754-9485.13285. Epub 2021 Jul 19.
8
An unsupervised 2D-3D deformable registration network (2D3D-RegNet) for cone-beam CT estimation.
Phys Med Biol. 2021 Mar 24;66(7). doi: 10.1088/1361-6560/abe9f6.
9
AAPM Task Group 264: The safe clinical implementation of MLC tracking in radiotherapy.
Med Phys. 2021 May;48(5):e44-e64. doi: 10.1002/mp.14625. Epub 2021 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验