Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA 19107, USA.
Metab Eng. 2010 Jan;12(1):26-38. doi: 10.1016/j.ymben.2009.08.010. Epub 2009 Sep 3.
Metabolic engineering of cellular systems to maximize reaction fluxes or metabolite concentrations still presents a significant challenge by encountering unpredictable instabilities that can be caused by simultaneous or consecutive enhancements of many reaction steps. It can therefore be important to select carefully small subsets of key enzymes for their subsequent stable modification compatible with cell physiology. To address this important problem, we introduce a general mixed integer non-linear problem (MINLP) formulation to compute automatically which enzyme levels should be modulated and which enzyme regulatory structures should be altered to achieve the given optimization goal using non-linear kinetic models of relevant cellular systems. The developed MINLP formulation directly employs a stability analysis constraint and also includes non-linear biophysical constraints to describe homeostasis conditions for metabolite concentrations and protein machinery without any preliminary model simplification (e.g. linlog kinetics approximation). The framework is demonstrated on a well-established large-scale kinetic model of the Escherichia coli central metabolism used for the optimization of the glucose uptake through the phosphotransferase transport system (PTS) and serine biosynthesis. Computational results show that substantial stable improvements can be predicted by manipulating only small subsets of enzyme levels and regulatory structures. This means that while more efforts can be required to elucidate larger stable optimal enzyme level/regulation choices, no further significant increase in the optimized fluxes can be obtained and, therefore, such choices may not be worth the effort due to the potential loss of stability properties. The source for instability through saddle-node and Hopf bifurcations is identified, and all results are contrasted with predictions from metabolic control analysis.
细胞系统的代谢工程旨在最大化反应通量或代谢物浓度,但仍面临着重大挑战,因为同时或连续增强许多反应步骤可能会导致不可预测的不稳定性。因此,选择关键酶的小子集进行后续稳定修饰以适应细胞生理学可能非常重要。为了解决这个重要的问题,我们引入了一种通用的混合整数非线性问题 (MINLP) 公式,以使用相关细胞系统的非线性动力学模型自动计算应该调节哪些酶水平以及应该改变哪些酶调节结构,以实现给定的优化目标。所开发的 MINLP 公式直接采用稳定性分析约束,并包括非线性生物物理约束,以在没有任何初步模型简化(例如 linlog 动力学逼近)的情况下描述代谢物浓度和蛋白质机器的动态平衡条件。该框架在大肠杆菌中心代谢的成熟大规模动力学模型上进行了演示,用于通过磷酸转移酶运输系统 (PTS) 和丝氨酸生物合成优化葡萄糖摄取。计算结果表明,通过仅操纵酶水平和调节结构的一小部分子集,可以预测到大量的稳定改进。这意味着,虽然阐明更大的稳定最优酶水平/调节选择可能需要更多的努力,但无法获得优化通量的进一步显著增加,因此由于潜在的稳定性丧失,此类选择可能不值得付出努力。通过鞍结和 Hopf 分岔确定了不稳定性的来源,并将所有结果与代谢控制分析的预测进行了对比。