Fonseca Luis L, Böttcher Lucas, Mehrad Borna, Laubenbacher Reinhard C
Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America.
Department of Computational Science and Philosophy, Frankfurt School of Finance and Management, Frankfurt am Main, Germany.
PLoS Comput Biol. 2025 Jan 14;21(1):e1012138. doi: 10.1371/journal.pcbi.1012138. eCollection 2025 Jan.
This paper describes and validates an algorithm to solve optimal control problems for agent-based models (ABMs). For a given ABM and a given optimal control problem, the algorithm derives a surrogate model, typically lower-dimensional, in the form of a system of ordinary differential equations (ODEs), solves the control problem for the surrogate model, and then transfers the solution back to the original ABM. It applies to quite general ABMs and offers several options for the ODE structure, depending on what information about the ABM is to be used. There is a broad range of applications for such an algorithm, since ABMs are used widely in the life sciences, such as ecology, epidemiology, and biomedicine and healthcare, areas where optimal control is an important purpose for modeling, such as for medical digital twin technology.
本文描述并验证了一种用于求解基于主体模型(ABM)最优控制问题的算法。对于给定的ABM和给定的最优控制问题,该算法会推导一个替代模型,通常是低维的,其形式为常微分方程(ODE)系统,求解替代模型的控制问题,然后将解转移回原始ABM。它适用于相当一般的ABM,并根据要使用的关于ABM的信息为ODE结构提供了几种选择。这种算法有广泛的应用范围,因为ABM在生命科学中被广泛使用,如生态学、流行病学以及生物医学和医疗保健领域,在这些领域中最优控制是建模的一个重要目标,例如医学数字孪生技术。