Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
Sci Signal. 2011 Aug 2;4(184):ra50. doi: 10.1126/scisignal.2001945.
Light, oxygen, or voltage (LOV) protein domains are present in many signaling proteins in bacteria, archaea, protists, plants, and fungi. The LOV protein VIVID (VVD) of the filamentous fungus Neurospora crassa enables the organism to adapt to constant or increasing amounts of light and facilitates proper entrainment of circadian rhythms. Here, we determined the crystal structure of the fully light-adapted VVD dimer and reveal the mechanism by which light-driven conformational change alters the oligomeric state of the protein. Light-induced formation of a cysteinyl-flavin adduct generated a new hydrogen bond network that released the amino (N) terminus from the protein core and restructured an acceptor pocket for binding of the N terminus on the opposite subunit of the dimer. Substitution of residues critical for the switch between the monomeric and the dimeric states of the protein had profound effects on light adaptation in Neurospora. The mechanism of dimerization of VVD provides molecular details that explain how members of a large family of photoreceptors convert light responses to alterations in protein-protein interactions.
光、氧或电压(LOV)蛋白结构域存在于细菌、古菌、原生生物、植物和真菌中的许多信号蛋白中。丝状真菌粗糙脉孢菌的 LOV 蛋白 VIVID(VVD)使生物体能够适应恒定或不断增加的光量,并促进生物钟节律的正常调节。在这里,我们确定了完全适应光的 VVD 二聚体的晶体结构,并揭示了光驱动构象变化改变蛋白质寡聚状态的机制。光诱导形成的半胱氨酸-黄素加合物生成了新的氢键网络,将氨基(N)末端从蛋白质核心释放出来,并重构了一个接受口袋,用于在二聚体的相反亚基上结合 N 末端。取代对于蛋白质单体和二聚体状态之间转换至关重要的残基对粗糙脉孢菌中光适应有深远影响。VVD 二聚化的机制提供了分子细节,解释了一大类光受体如何将光反应转化为蛋白质-蛋白质相互作用的改变。