Suppr超能文献

马尔可夫随机场纹理模型。

Markov random field texture models.

机构信息

MEMBER, IEEE, Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803.

出版信息

IEEE Trans Pattern Anal Mach Intell. 1983 Jan;5(1):25-39. doi: 10.1109/tpami.1983.4767341.

Abstract

We consider a texture to be a stochastic, possibly periodic, two-dimensional image field. A texture model is a mathematical procedure capable of producing and describing a textured image. We explore the use of Markov random fields as texture models. The binomial model, where each point in the texture has a binomial distribution with parameter controlled by its neighbors and ``number of tries'' equal to the number of gray levels, was taken to be the basic model for the analysis. A method of generating samples from the binomial model is given, followed by a theoretical and practical analysis of the method's convergence. Examples show how the parameters of the Markov random field control the strength and direction of the clustering in the image. The power of the binomial model to produce blurry, sharp, line-like, and blob-like textures is demonstrated. Natural texture samples were digitized and their parameters were estimated under the Markov random field model. A hypothesis test was used for an objective assessment of goodness-of-fit under the Markov random field model. Overall, microtextures fit the model well. The estimated parameters of the natural textures were used as input to the generation procedure. The synthetic microtextures closely resembled their real counterparts, while the regular and inhomogeneous textures did not.

摘要

我们认为纹理是一种随机的、可能周期性的二维图像场。纹理模型是一种能够生成和描述纹理图像的数学过程。我们探索了使用马尔可夫随机场作为纹理模型。二项式模型,其中纹理中的每个点都具有二项分布,其参数由其邻居控制,“尝试次数”等于灰度级的数量,被视为分析的基本模型。给出了从二项式模型生成样本的方法,然后对该方法的收敛性进行了理论和实际分析。示例展示了马尔可夫随机场的参数如何控制图像中聚类的强度和方向。演示了二项式模型生成模糊、锐利、线状和块状纹理的能力。对自然纹理样本进行了数字化,并根据马尔可夫随机场模型对其参数进行了估计。使用假设检验对马尔可夫随机场模型下的拟合优度进行了客观评估。总体而言,微观纹理与模型拟合良好。自然纹理的估计参数被用作生成过程的输入。合成微观纹理与真实纹理非常相似,而规则和不均匀的纹理则不然。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验