Liu Guang-Hai, Wei Zhao
College of Computer Science and Information Technology, Guangxi Normal University, Guilin 541004, China.
Comput Intell Neurosci. 2020 Nov 24;2020:8876480. doi: 10.1155/2020/8876480. eCollection 2020.
Extracting visual features for image retrieval by mimicking human cognition remains a challenge. Opponent color and HSV color spaces can mimic human visual perception well. In this paper, we improve and extend the CDH method using a multi-stage model to extract and represent an image in a way that mimics human perception. Our main contributions are as follows: (1) a visual feature descriptor is proposed to represent an image. It has the advantages of a histogram-based method and is consistent with visual perception factors such as spatial layout, intensity, edge orientation, and the opponent colors. (2) We improve the distance formula of CDHs; it can effectively adjust the similarity between images according to two parameters. The proposed method provides efficient performance in similar image retrieval rather than instance retrieval. Experiments with four benchmark datasets demonstrate that the proposed method can describe color, texture, and spatial features and performs significantly better than the color volume histogram, color difference histogram, local binary pattern histogram, and multi-texton histogram, and some SURF-based approaches.
通过模仿人类认知来提取用于图像检索的视觉特征仍然是一个挑战。对立颜色和HSV颜色空间能够很好地模仿人类视觉感知。在本文中,我们使用多阶段模型改进并扩展了CDH方法,以一种模仿人类感知的方式来提取和表示图像。我们的主要贡献如下:(1)提出了一种视觉特征描述符来表示图像。它具有基于直方图方法的优点,并且与诸如空间布局、强度、边缘方向和对立颜色等视觉感知因素相一致。(2)我们改进了CDHs的距离公式;它可以根据两个参数有效地调整图像之间的相似度。所提出的方法在相似图像检索而非实例检索中提供了高效的性能。对四个基准数据集的实验表明,所提出的方法能够描述颜色、纹理和空间特征,并且性能明显优于颜色体积直方图、色差直方图、局部二值模式直方图、多纹理直方图以及一些基于SURF的方法。