Suppr超能文献

一种用于磁共振(MR)图像的小波多尺度去噪算法。

A wavelet multiscale denoising algorithm for magnetic resonance (MR) images.

作者信息

Yang Xiaofeng, Fei Baowei

机构信息

Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China ; Department of Radiology, Emory University, Atlanta, GA 30329, USA.

出版信息

Meas Sci Technol. 2011 Feb 1;22(2):25803. doi: 10.1088/0957-0233/22/2/025803.

Abstract

Based on the Radon transform, a wavelet multiscale denoising method is proposed for MR images. The approach explicitly accounts for the Rician nature of MR data. Based on noise statistics we apply the Radon transform to the original MR images and use the Gaussian noise model to process the MR sinogram image. A translation invariant wavelet transform is employed to decompose the MR 'sinogram' into multiscales in order to effectively denoise the images. Based on the nature of Rician noise we estimate noise variance in different scales. For the final denoised sinogram we apply the inverse Radon transform in order to reconstruct the original MR images. Phantom, simulation brain MR images, and human brain MR images were used to validate our method. The experiment results show the superiority of the proposed scheme over the traditional methods. Our method can reduce Rician noise while preserving the key image details and features. The wavelet denoising method can have wide applications in MRI as well as other imaging modalities.

摘要

基于拉东变换,提出了一种用于磁共振图像的小波多尺度去噪方法。该方法明确考虑了磁共振数据的莱斯分布特性。基于噪声统计,我们将拉东变换应用于原始磁共振图像,并使用高斯噪声模型处理磁共振正弦图图像。采用平移不变小波变换将磁共振“正弦图”分解为多尺度,以便有效地对图像进行去噪。基于莱斯噪声的特性,我们估计不同尺度下的噪声方差。对于最终去噪后的正弦图,我们应用逆拉东变换来重建原始磁共振图像。使用体模、模拟脑磁共振图像和人脑磁共振图像来验证我们的方法。实验结果表明,所提出的方案优于传统方法。我们的方法可以在保留关键图像细节和特征的同时降低莱斯噪声。小波去噪方法在磁共振成像以及其他成像模态中具有广泛的应用。

相似文献

2
Wavelet-domain TI Wiener-like filtering for complex MR data denoising.用于复杂磁共振数据去噪的小波域TI类维纳滤波
Magn Reson Imaging. 2016 Oct;34(8):1128-40. doi: 10.1016/j.mri.2016.05.011. Epub 2016 May 26.

引用本文的文献

1
MRI Denoising Using Pixel-Wise Threshold Selection.使用逐像素阈值选择的MRI去噪
IEEE Access. 2024;12:135730-135745. doi: 10.1109/access.2024.3449811. Epub 2024 Aug 26.
10

本文引用的文献

1
Multicomponent MR Image Denoising.多分量磁共振图像去噪
Int J Biomed Imaging. 2009;2009:756897. doi: 10.1155/2009/756897. Epub 2009 Oct 29.
2
Advances in magnetic resonance neuroimaging.磁共振神经成像的进展。
Neurol Clin. 2009 Feb;27(1):1-19, xiii. doi: 10.1016/j.ncl.2008.09.006.
3
MRI denoising using non-local means.使用非局部均值的磁共振成像去噪
Med Image Anal. 2008 Aug;12(4):514-523. doi: 10.1016/j.media.2008.02.004. Epub 2008 Feb 29.
6
The curvelet transform for image denoising.用于图像去噪的曲波变换。
IEEE Trans Image Process. 2002;11(6):670-84. doi: 10.1109/TIP.2002.1014998.
7
The finite ridgelet transform for image representation.用于图像表示的有限脊波变换。
IEEE Trans Image Process. 2003;12(1):16-28. doi: 10.1109/TIP.2002.806252.
8
Nonlinear anisotropic filtering of MRI data.MRI 数据的非线性各向异性滤波。
IEEE Trans Med Imaging. 1992;11(2):221-32. doi: 10.1109/42.141646.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验