Suppr超能文献

基于血清肌酐和胱抑素 C 的尿镉与肾脏结局的相关性差异。

Differences in urine cadmium associations with kidney outcomes based on serum creatinine and cystatin C.

机构信息

Division of Occupational and Environmental Health, Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615N. Wolfe St., Rm. 7041, Baltimore, MD 21205, USA.

出版信息

Environ Res. 2011 Nov;111(8):1236-42. doi: 10.1016/j.envres.2011.07.012. Epub 2011 Aug 25.

Abstract

Cadmium is a well-known nephrotoxicant; chronic exposure increases risk for chronic kidney disease. Recently, however, associations between urine cadmium and higher creatinine-based estimated glomerular filtration rate (eGFR) have been reported. Analyses utilizing alternate biomarkers of kidney function allow evaluation of potential mechanisms for these observations. We compared associations of urine cadmium with kidney function measures based on serum cystatin C to those with serum creatinine in 712 lead workers. Mean (standard deviation) molybdenum-corrected urine cadmium, Modification of Diet in Renal Disease (MDRD) eGFR and multi-variable cystatin C eGFR were 1.02 (0.65) μg/g creatinine, and 97.4 (19.2) and 112.0 (17.7) mL/min/1.73 m2, respectively. The eGFR measures were moderately correlated (rs=0.5; p<0.001). After adjustment, ln (urine cadmium) was not associated with serum cystatin-C-based measures. However, higher ln (urine cadmium) was associated with higher creatinine-based eGFRs including the MDRD and an equation incorporating serum cystatin C and creatinine (beta-coefficient=4.1 mL/min/1.73 m2; 95% confidence interval=1.6, 6.6). Urine creatinine was associated with serum creatinine-based but not cystatin-C-based eGFRs. These results support a biomarker-specific, rather than a kidney function, effect underlying the associations observed between higher urine cadmium and creatinine-based kidney function measures. Given the routine use of serum and urine creatinine in kidney and biomarker research, additional research to elucidate the mechanism(s) for these associations is essential.

摘要

镉是一种众所周知的肾毒物;慢性暴露会增加患慢性肾病的风险。然而,最近有研究报告称,尿液中的镉与更高的基于肌酐的估计肾小球滤过率(eGFR)之间存在关联。利用替代的肾功能生物标志物进行分析,可以评估这些观察结果的潜在机制。我们在 712 名铅作业工人中比较了基于血清胱抑素 C 的肾功能指标与血清肌酐的尿液镉与肾功能的相关性。经钼校正的尿液镉、改良肾脏病饮食研究(MDRD)eGFR 和多变量胱抑素 C eGFR 的平均值(标准差)分别为 1.02(0.65)μg/g 肌酐,97.4(19.2)和 112.0(17.7)mL/min/1.73m2。这些 eGFR 指标中度相关(rs=0.5;p<0.001)。校正后,ln(尿镉)与基于血清胱抑素 C 的指标无关。然而,较高的 ln(尿镉)与基于肌酐的 eGFR 呈正相关,包括 MDRD 和包含血清胱抑素 C 和肌酐的方程(β系数=4.1mL/min/1.73m2;95%置信区间=1.6,6.6)。尿肌酐与基于血清肌酐的 eGFR 相关,但与基于胱抑素 C 的 eGFR 无关。这些结果支持了在观察到的较高尿液镉与基于肌酐的肾功能测量之间的关联背后存在的生物标志物特异性而非肾功能效应。鉴于血清和尿液肌酐在肾脏和生物标志物研究中的常规应用,阐明这些关联的机制至关重要。

相似文献

1
Differences in urine cadmium associations with kidney outcomes based on serum creatinine and cystatin C.
Environ Res. 2011 Nov;111(8):1236-42. doi: 10.1016/j.envres.2011.07.012. Epub 2011 Aug 25.
2
Associations of multiple metals with kidney outcomes in lead workers.
Occup Environ Med. 2012 Oct;69(10):727-35. doi: 10.1136/oemed-2012-100765. Epub 2012 Jul 26.
3
Associations of low-level urine cadmium with kidney function in lead workers.
Occup Environ Med. 2011 Apr;68(4):250-6. doi: 10.1136/oem.2010.056077. Epub 2010 Oct 25.
4
Associations of blood lead with estimated glomerular filtration rate using MDRD, CKD-EPI and serum cystatin C-based equations.
Nephrol Dial Transplant. 2011 Sep;26(9):2786-92. doi: 10.1093/ndt/gfq773. Epub 2011 Jan 19.
6
A comparison between serum creatinine and cystatin C-based equations for estimation of graft function.
Transplant Proc. 2012 Oct;44(8):2352-6. doi: 10.1016/j.transproceed.2012.07.032.
7
Differential estimation of CKD using creatinine- versus cystatin C-based estimating equations by category of body mass index.
Am J Kidney Dis. 2009 Jun;53(6):993-1001. doi: 10.1053/j.ajkd.2008.12.043. Epub 2009 Apr 25.
10
Cystatin C enhances glomerular filtration rate estimating equations in kidney transplant recipients.
Am J Nephrol. 2014;39(1):59-65. doi: 10.1159/000357594. Epub 2014 Jan 18.

引用本文的文献

3
The Risk Factors of Blood Cadmium Elevation in Chronic Kidney Disease.
Int J Environ Res Public Health. 2021 Nov 24;18(23):12337. doi: 10.3390/ijerph182312337.
4
Low-Level Cadmium Exposure and Atherosclerosis.
Curr Environ Health Rep. 2021 Mar;8(1):42-53. doi: 10.1007/s40572-021-00304-w. Epub 2021 Mar 23.
5
6
Associations between urinary cadmium levels, blood pressure, and hypertension: the ESTEBAN survey.
Environ Sci Pollut Res Int. 2020 Apr;27(10):10748-10756. doi: 10.1007/s11356-019-07249-6. Epub 2020 Jan 16.
9
10
Is Urinary Cadmium a Biomarker of Long-term Exposure in Humans? A Review.
Curr Environ Health Rep. 2016 Dec;3(4):450-458. doi: 10.1007/s40572-016-0107-y.

本文引用的文献

1
Associations of low-level urine cadmium with kidney function in lead workers.
Occup Environ Med. 2011 Apr;68(4):250-6. doi: 10.1136/oem.2010.056077. Epub 2010 Oct 25.
2
Cadmium and transport of ions and substances across cell membranes and epithelia.
Biometals. 2010 Oct;23(5):823-55. doi: 10.1007/s10534-010-9357-6. Epub 2010 Jun 27.
3
4
Major contribution of tubular secretion to creatinine clearance in mice.
Kidney Int. 2010 Mar;77(6):519-26. doi: 10.1038/ki.2009.501. Epub 2009 Dec 23.
5
Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis.
Am J Epidemiol. 2009 Nov 1;170(9):1156-64. doi: 10.1093/aje/kwp248. Epub 2009 Aug 21.
6
Creatinine and cystatin C: what are the values?
Kidney Int. 2009 Mar;75(6):578-80. doi: 10.1038/ki.2008.688.
7
Factors other than glomerular filtration rate affect serum cystatin C levels.
Kidney Int. 2009 Mar;75(6):652-60. doi: 10.1038/ki.2008.638. Epub 2008 Dec 31.
9
A Comparison of GFR estimating formulae based upon s-cystatin C and s-creatinine and a combination of the two.
Nephrol Dial Transplant. 2008 Jan;23(1):154-60. doi: 10.1093/ndt/gfm661. Epub 2007 Oct 2.
10
Megalin-mediated endocytosis of cystatin C in proximal tubule cells.
Biochem Biophys Res Commun. 2007 Jun 15;357(4):1130-4. doi: 10.1016/j.bbrc.2007.04.072. Epub 2007 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验