Su Li, Tom Brian Dm, Farewell Vernon T
Medical Research Council Biostatistics Unit, Institute of Public Health, University Forvie Site, Cambridge, UK.
Stat Methods Med Res. 2015 Apr;24(2):194-205. doi: 10.1177/0962280211414620. Epub 2011 Aug 25.
Two-part models are an attractive approach for analysing longitudinal semicontinuous data consisting of a mixture of true zeros and continuously distributed positive values. When the population-averaged (marginal) covariate effects are of interest, two-part models that provide straightforward interpretation of the marginal effects are desirable. Presently, the only available approaches for fitting two-part marginal models to longitudinal semicontinuous data are computationally difficult to implement. Therefore, there exists a need to develop two-part marginal models that can be easily implemented in practice. We propose a fully likelihood-based two-part marginal model that satisfies this need by using the bridge distribution for the random effect in the binary part of an underlying two-part mixed model; and its maximum likelihood estimation can be routinely implemented via standard statistical software such as the SAS NLMIXED procedure. We illustrate the usage of this new model by investigating the marginal effects of pre-specified genetic markers on physical functioning, as measured by the Health Assessment Questionnaire, in a cohort of psoriatic arthritis patients from the University of Toronto Psoriatic Arthritis Clinic. An added benefit of our proposed marginal model when compared to a two-part mixed model is the robustness in regression parameter estimation when departure from the true random effects structure occurs. This is demonstrated through simulation.
两部分模型是分析由真实零值和连续分布的正值混合而成的纵向半连续数据的一种有吸引力的方法。当关注总体平均(边际)协变量效应时,能直接解释边际效应的两部分模型是很有必要的。目前,用于对纵向半连续数据拟合两部分边际模型的唯一可用方法在计算上难以实现。因此,需要开发一种在实践中易于实现的两部分边际模型。我们提出了一种基于完全似然的两部分边际模型,该模型通过在潜在的两部分混合模型的二元部分中使用桥接分布来处理随机效应,从而满足这一需求;并且其最大似然估计可以通过标准统计软件(如SAS的NLMIXED过程)常规实现。我们通过研究多伦多大学银屑病关节炎诊所的一组银屑病关节炎患者中,预先指定的基因标记对健康评估问卷所测量的身体功能的边际效应,来说明这种新模型的用法。与两部分混合模型相比,我们提出的边际模型的一个附加优点是,当偏离真实随机效应结构时,回归参数估计具有稳健性。这通过模拟得到了证明。