Suppr超能文献

开发和验证一种基于光学相干断层扫描的计算机辅助诊断工具,用于筛查年龄相关性黄斑变性。

Development and validation of a computer-aided diagnostic tool to screen for age-related macular degeneration by optical coherence tomography.

机构信息

Evaluation and Planning Unit, Canary Islands Health Service, Canary Islands, Spain.

出版信息

Br J Ophthalmol. 2012 Apr;96(4):503-7. doi: 10.1136/bjophthalmol-2011-300660. Epub 2011 Aug 26.

Abstract

BACKGROUND

To develop and assess the technical validity of new computer-aided diagnostic software (CAD) for automated analyses of optical coherence tomography (OCT) images for the purpose of screening for neovascular age-related macular degeneration.

METHODS

Artificial visual techniques were used to develop the CAD in two steps: normalisation and feature vector extraction from OCT images; and training and classification by means of decision trees. Technical validation was performed by a retrospective study design based on OCT images randomly extracted from clinical charts. Images were classified as normal or abnormal to serve for screening purposes. Sensitivity, specificity, positive predictive values and negative predictive values were obtained.

RESULTS

The CAD was able to quantify image information by working in the perceptually uniform hue-saturation-value colour space. Particle swarm optimisation with Haar-like features is suitable to reveal structural features in normal and abnormal OCT images. Decision trees were useful to characterise normal and abnormal images using feature vectors obtained from descriptive statistics of detected structures. The sensitivity of the CAD was 96% and the specificity 92%.

CONCLUSIONS

This new CAD for automated analysis of OCT images offers adequate sensitivity and specificity to distinguish normal OCT images from those showing potential neovascular age-related macular degeneration. These results will enable its clinical validation and a subsequent cost-effectiveness assessment to be made before recommendations are made for population-screening purposes.

摘要

背景

为了开发和评估新的计算机辅助诊断软件 (CAD) 的技术有效性,用于自动分析光学相干断层扫描 (OCT) 图像,目的是筛查新生血管性年龄相关性黄斑变性。

方法

使用人工视觉技术分两步开发 CAD:对 OCT 图像进行归一化和特征向量提取;通过决策树进行训练和分类。通过基于从临床图表中随机提取的 OCT 图像的回顾性研究设计进行技术验证。图像被分类为正常或异常,以用于筛查目的。获得了敏感性、特异性、阳性预测值和阴性预测值。

结果

CAD 能够通过在感知均匀的色调-饱和度-值颜色空间中工作来量化图像信息。具有 Haar 特征的粒子群优化适用于揭示正常和异常 OCT 图像中的结构特征。决策树可用于使用从检测到的结构的描述性统计数据获得的特征向量来表征正常和异常图像。CAD 的敏感性为 96%,特异性为 92%。

结论

这种用于自动分析 OCT 图像的新 CAD 能够提供足够的敏感性和特异性,以区分正常 OCT 图像和显示潜在新生血管性年龄相关性黄斑变性的图像。这些结果将使其能够在进行人群筛查之前进行临床验证和随后的成本效益评估,并提出建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验