Suppr超能文献

预测阿拉斯加水域未开发雪蟹(Chionoecetes opilio)种群的分布和生态位:首个开放获取的集合模型。

Predicting the distribution and ecological niche of unexploited snow crab (Chionoecetes opilio) populations in Alaskan waters: a first open-access ensemble model.

机构信息

University of Alaska, Fairbanks, School of Fisheries and Ocean Sciences, Fairbanks, AK 99775, USA.

出版信息

Integr Comp Biol. 2011 Oct;51(4):608-22. doi: 10.1093/icb/icr102. Epub 2011 Aug 27.

Abstract

Populations of the snow crab (Chionoecetes opilio) are widely distributed on high-latitude continental shelves of the North Pacific and North Atlantic, and represent a valuable resource in both the United States and Canada. In US waters, snow crabs are found throughout the Arctic and sub-Arctic seas surrounding Alaska, north of the Aleutian Islands, yet commercial harvest currently focuses on the more southerly population in the Bering Sea. Population dynamics are well-monitored in exploited areas, but few data exist for populations further north where climate trends in the Arctic appear to be affecting species' distributions and community structure on multiple trophic levels. Moreover, increased shipping traffic, as well as fisheries and petroleum resource development, may add additional pressures in northern portions of the range as seasonal ice cover continues to decline. In the face of these pressures, we examined the ecological niche and population distribution of snow crabs in Alaskan waters using a GIS-based spatial modeling approach. We present the first quantitative open-access model predictions of snow-crab distribution, abundance, and biomass in the Chukchi and Beaufort Seas. Multi-variate analysis of environmental drivers of species' distribution and community structure commonly rely on multiple linear regression methods. The spatial modeling approach employed here improves upon linear regression methods in allowing for exploration of nonlinear relationships and interactions between variables. Three machine-learning algorithms were used to evaluate relationships between snow-crab distribution and environmental parameters, including TreeNet, Random Forests, and MARS. An ensemble model was then generated by combining output from these three models to generate consensus predictions for presence-absence, abundance, and biomass of snow crabs. Each algorithm identified a suite of variables most important in predicting snow-crab distribution, including nutrient and chlorophyll-a concentrations in overlying waters, temperature, salinity, and annual sea-ice cover; this information may be used to develop and test hypotheses regarding the ecology of this species. This is the first such quantitative model for snow crabs, and all GIS-data layers compiled for this project are freely available from the authors, upon request, for public use and improvement.

摘要

雪蟹(Chionoecetes opilio)广泛分布于北太平洋和北大西洋的高纬度大陆架上,是美国和加拿大的宝贵资源。在美国水域,雪蟹分布于阿拉斯加周围的北极和亚北极海域以及阿留申群岛以北的海域,但商业捕捞目前集中在白令海较温暖的种群。受捕捞影响的地区对种群动态进行了很好的监测,但在更靠北的地区,由于北极地区的气候变化似乎正在影响多个营养级别的物种分布和群落结构,因此几乎没有数据。此外,随着航运交通的增加以及渔业和石油资源的开发,随着季节性海冰的持续减少,在该物种分布范围的北部地区可能会增加额外的压力。面对这些压力,我们使用基于 GIS 的空间建模方法研究了阿拉斯加水域雪蟹的生态位和种群分布。我们首次提出了有关楚科奇海和波弗特海雪蟹分布、丰度和生物量的定量公开模型预测。物种分布和群落结构的环境驱动因素的多变量分析通常依赖于多元线性回归方法。这里采用的空间建模方法通过允许探索变量之间的非线性关系和相互作用,改进了线性回归方法。使用了三种机器学习算法来评估雪蟹分布与环境参数之间的关系,包括 TreeNet、Random Forests 和 MARS。然后通过组合这三种模型的输出生成一个集成模型,从而对雪蟹的存在、丰度和生物量生成共识预测。每种算法都确定了一套对预测雪蟹分布最重要的变量,包括上层水域中的营养物和叶绿素-a 浓度、温度、盐度和年海冰覆盖;这些信息可用于开发和检验有关该物种生态学的假设。这是第一个针对雪蟹的此类定量模型,并且应要求可以从作者处免费获得为该项目编译的所有 GIS 数据层,以供公众使用和改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验