Steiner Moriz, Huettmann F, Bryans N, Barker B
IUCN Small Mammal Specialist Group (SMSG), IUCN, Rue Mauverney 28, 1196, Gland, Switzerland.
IUCN Species Survival Commission (SSC), IUCN, Rue Mauverney 28, 1196, Gland, Switzerland.
Sci Rep. 2024 Mar 3;14(1):5204. doi: 10.1038/s41598-024-55173-8.
Species-habitat associations are correlative, can be quantified, and used for powerful inference. Nowadays, Species Distribution Models (SDMs) play a big role, e.g. using Machine Learning and AI algorithms, but their best-available technical opportunities remain still not used for their potential e.g. in the policy sector. Here we present Super SDMs that invoke ML, OA Big Data, and the Cloud with a workflow for the best-possible inference for the 300 + global squirrel species. Such global Big Data models are especially important for the many marginalized squirrel species and the high number of endangered and data-deficient species in the world, specifically in tropical regions. While our work shows common issues with SDMs and the maxent algorithm ('Shallow Learning'), here we present a multi-species Big Data SDM template for subsequent ensemble models and generic progress to tackle global species hotspot and coldspot assessments for a more inclusive and holistic inference.
物种 - 栖息地关联具有相关性,可以量化,并用于有力的推断。如今,物种分布模型(SDMs)发挥着重要作用,例如使用机器学习和人工智能算法,但它们目前最佳的技术机会在政策领域等方面的潜力仍未得到充分利用。在此,我们展示了超级物种分布模型,该模型运用机器学习、开放获取大数据以及云计算,并采用一种工作流程,以便对全球300多种松鼠物种进行尽可能最佳的推断。此类全球大数据模型对于世界上许多边缘化的松鼠物种以及大量濒危和数据缺乏的物种而言尤为重要,特别是在热带地区。虽然我们的研究揭示了物种分布模型和最大熵算法(“浅层学习”)存在的共同问题,但在此我们提出了一个多物种大数据物种分布模型模板,用于后续的集成模型以及一般性进展,以应对全球物种热点和冷点评估,从而实现更具包容性和整体性的推断。