Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada.
Nat Mater. 2011 Oct;10(10):799-806. doi: 10.1038/nmat3101.
Three-dimensional (3D) protein-patterned scaffolds provide a more biomimetic environment for cell culture than traditional two-dimensional surfaces, but simultaneous 3D protein patterning has proved difficult. We developed a method to spatially control the immobilization of different growth factors in distinct volumes in 3D hydrogels, and to specifically guide differentiation of stem/progenitor cells therein. Stem-cell differentiation factors sonic hedgehog (SHH) and ciliary neurotrophic factor (CNTF) were simultaneously immobilized using orthogonal physical binding pairs, barnase-barstar and streptavidin-biotin, respectively. Barnase and streptavidin were sequentially immobilized using two-photon chemistry for subsequent concurrent complexation with fusion proteins barstar-SHH and biotin-CNTF, resulting in bioactive 3D patterned hydrogels. The technique should be broadly applicable to the patterning of a wide range of proteins.
三维(3D)蛋白质图案支架为细胞培养提供了比传统二维表面更仿生的环境,但同时进行 3D 蛋白质图案化一直很困难。我们开发了一种方法,可以在 3D 水凝胶中空间控制不同生长因子在不同体积中的固定,并特异性地引导其中干细胞/祖细胞的分化。使用正交物理结合对 barnase-barstar 和 streptavidin-biotin,分别将干细胞分化因子 sonic hedgehog (SHH) 和睫状神经营养因子 (CNTF) 同时固定。 barnase 和 streptavidin 分别使用双光子化学固定,随后与融合蛋白 barstar-SHH 和 biotin-CNTF 进行复性,得到具有生物活性的 3D 图案化水凝胶。该技术应该广泛适用于各种蛋白质的图案化。