Suppr超能文献

用于仿生组织工程的水凝胶支架的4D生化光定制

4D Biochemical Photocustomization of Hydrogel Scaffolds for Biomimetic Tissue Engineering.

作者信息

Francis Ryan M, DeForest Cole A

机构信息

Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States.

Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States; Department of Bioengineering, Department of Chemistry, Institute of Stem Cell & Regenerative Medicine, Molecular Engineering & Sciences Institute, and Institute for Protein Design, University of Washington, Seattle, Washington 98105, United States.

出版信息

Acc Mater Res. 2023 Aug 25;4(8):704-715. doi: 10.1021/accountsmr.3c00062. Epub 2023 Jul 12.

Abstract

Programmable engineered tissues and the materials that support them are instrumental to the development of next-generation therapeutics and gaining new understanding of human biology. Toward these ends, recent years have brought a growing emphasis on the creation of "4D" hydrogel culture platforms-those that can be customized in 3D space and on demand over time. Many of the most powerful 4D-tunable biomaterials are photochemically regulated, affording users unmatched spatiotemporal modulation through high-yielding, synthetically tractable, and cytocompatible reactions. Precise physicochemical manipulation of gel networks has given us the ability to drive critical changes in cell fate across a diverse range of distance and time scales, including proliferation, migration, and differentiation through user-directed intracellular and intercellular signaling. This Account provides a survey of the numerous creative approaches taken by our lab and others to recapitulate the dynamically heterogeneous biochemistry underpinning extracellular matrix (ECM)-cell interactions via light-based network (de)decoration with biomolecules (e.g., peptides, proteins) and protein activation/generation. We believe the insights gained from these studies can motivate disruptive improvements to emerging technologies, including low-variability organoid generation and culture, high-throughput drug screening, and personalized medicine. As photolithography and chemical modification strategies continue to mature, access to and control over new and increasingly complex biological pathways are being unlocked. The earliest hydrogel photopatterning efforts selectively encapsulated bioactive peptides and drugs into rudimentary gel volumes. Through continued exploration and refinement, next-generation materials now boast reversible, multiplexed, and/or Boolean logic-based biomolecule presentation, as well as functional activation at subcellular resolutions throughout 3D space. Lithographic hardware and software technologies, particularly those enabling image-guided patterning, allow researchers to precisely replicate complex biological structures within engineered tissue environments. The advent of bioorthogonal click chemistries has expanded 4D tissue engineering toolkits, permitting diverse constructs to be independently customized in the vicinity of any cell that is amenable to hydrogel-based culture. Additionally, the adoption of modern protein engineering techniques including genetic code expansion and chemoenzymatic alteration provides a roadmap toward site-specific modification of nearly any recombinant or isolated protein, affording installation of photoreactive and click handles without sacrificing their bioactivity. While the established bind, release, (de)activate paradigm in hydrogel photolithography continues to thrive alongside these modern engineering techniques, new studies are also demonstrating photocontrol of more complex or nonclassical operations, including engineered material-microorganism interfaces and functional protein photoassembly. Such creative approaches offer exciting new avenues for the field, including spatial control of on-demand biomolecule production from cellular depots and patterned bioactivity using a growing array of split protein pairs. Taken together, these technologies provide the foundation for truly biomimetic photopatterning of engineered tissues.

摘要

可编程工程组织及其支撑材料对下一代治疗方法的开发以及对人类生物学的新认识至关重要。为此,近年来人们越来越重视创建“4D”水凝胶培养平台,即那些可以在3D空间中按需随时间定制的平台。许多最强大的4D可调生物材料是通过光化学调控的,通过高产、易于合成且细胞相容的反应为用户提供无与伦比的时空调制。对凝胶网络进行精确的物理化学操作使我们有能力在不同的距离和时间尺度上驱动细胞命运的关键变化,包括通过用户指导的细胞内和细胞间信号传导实现增殖、迁移和分化。本综述介绍了我们实验室和其他实验室采用的众多创新方法,通过基于光的网络(去)修饰生物分子(如肽、蛋白质)和蛋白质激活/生成,来重现细胞外基质(ECM)-细胞相互作用背后动态异质的生物化学过程。我们相信,从这些研究中获得的见解能够推动新兴技术的突破性改进,包括低变异性类器官的生成和培养、高通量药物筛选以及个性化医疗。随着光刻和化学修饰策略不断成熟,人们正在解锁对新的且日益复杂的生物途径的访问和控制。最早进行的水凝胶光图案化工作是将生物活性肽和药物选择性地封装到基本的凝胶体积中。通过持续的探索和改进,下一代材料现在具备可逆、多重和/或基于布尔逻辑的生物分子呈现,以及在整个3D空间中以亚细胞分辨率进行功能激活。光刻硬件和软件技术,特别是那些实现图像引导图案化的技术,使研究人员能够在工程组织环境中精确复制复杂的生物结构。生物正交点击化学的出现扩展了4D组织工程工具包,使各种构建体能够在任何适合基于水凝胶培养的细胞附近独立定制。此外,采用包括遗传密码扩展和化学酶促改变在内的现代蛋白质工程技术,为几乎任何重组或分离蛋白质的位点特异性修饰提供了路线图,在不牺牲其生物活性的情况下实现光反应性和点击手柄的安装。虽然水凝胶光刻中已确立的结合、释放、(去)激活范式与这些现代工程技术一同蓬勃发展,但新的研究也在展示对更复杂或非经典操作的光控,包括工程化材料 - 微生物界面和功能性蛋白质光组装。这些创新方法为该领域提供了令人兴奋的新途径,包括从细胞储存库按需生产生物分子的空间控制以及使用越来越多的分裂蛋白质对进行图案化生物活性。总之,这些技术为工程组织的真正仿生光图案化奠定了基础。

相似文献

本文引用的文献

2
Middle-out methods for spatiotemporal tissue engineering of organoids.类器官时空组织工程的中间向外方法。
Nat Rev Bioeng. 2023;1(5):329-345. doi: 10.1038/s44222-023-00039-3. Epub 2023 Mar 13.
5
Notch signaling pathway: architecture, disease, and therapeutics.Notch 信号通路:结构、疾病与治疗。
Signal Transduct Target Ther. 2022 Mar 24;7(1):95. doi: 10.1038/s41392-022-00934-y.
8
Light-Regulated Angiogenesis via a Phototriggerable VEGF Peptidomimetic.光调控的血管生成通过光触发的 VEGF 肽模拟物。
Adv Healthc Mater. 2021 Jul;10(14):e2100488. doi: 10.1002/adhm.202100488. Epub 2021 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验