Suppr超能文献

适用于宽气压范围应用的电容式微机械超声换能器的有限元分析

FEA of CMUTs Suitable for Wide Gas Pressure Range Applications.

作者信息

Ho Min-Chieh, Kupnik Mario, Khuri-Yakub Butrus T

机构信息

Edward L. Ginzton Laboratory, Stanford University, Stanford, CA.

出版信息

Proc IEEE Ultrason Symp. 2010 Oct 11;2010:1234-1237. doi: 10.1109/ULTSYM.2010.5935678.

Abstract

The ability of ultrasound transducers to operate over a wide and varying pressure range is essential in applications such as ultrasonic flow metering (UFM) of flare gas. We propose a new operational mode for capacitive micromachined ultrasonic transducers (CMUTs), in which the plate is in permanent contact with the bottom of the cavity, even at zero DC bias and 1 atm pressure. Finite element analysis (FEA) software was used to investigate the performance of these CMUTs within the pressure range of 1 to 20 atm. First, we performed a static analysis to determine the plate deflection and, thus, the gap height. Further, from the static analysis, we obtained the static and free capacitances for calculating the coupling efficiency, and a modal analysis identified possible design geometries for frequencies lower than ~ 300 kHz. Our calculations show that conventionally operated CMUTs have huge changes in static operational point at different pressures, while our proposed mode exhibits an acceptable frequency range (73 - 340 kHz) over 1 - 20 atm pressure and an improved coupling efficiency at lower dc bias voltages. A donut shape partial electrode further allows us to tune the coupling efficiency, which translates into a better performance, especially at the higher pressure range. FEA shows that our proposed operation mode is a promising solution for flare gas metering applications.

摘要

超声换能器在宽且变化的压力范围内工作的能力在诸如火炬气的超声流量计量(UFM)等应用中至关重要。我们提出了一种用于电容式微机械超声换能器(CMUT)的新操作模式,其中即使在零直流偏置和1个大气压的压力下,极板也与腔体底部永久接触。使用有限元分析(FEA)软件来研究这些CMUT在1至20个大气压压力范围内的性能。首先,我们进行了静态分析以确定极板挠度,进而确定间隙高度。此外,通过静态分析,我们获得了用于计算耦合效率的静态电容和自由电容,并且模态分析确定了频率低于约300 kHz时可能的设计几何形状。我们的计算表明,传统操作的CMUT在不同压力下静态工作点有巨大变化,而我们提出的模式在1至20个大气压压力范围内展现出可接受的频率范围(73 - 340 kHz),并且在较低直流偏置电压下耦合效率有所提高。环形部分电极进一步使我们能够调整耦合效率,这转化为更好的性能,特别是在较高压力范围内。有限元分析表明,我们提出的操作模式是火炬气计量应用的一种有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bd2/3160643/23125c86be1d/nihms255132f1.jpg

相似文献

2
Capacitive micromachined ultrasonic transducer design for high power transmission.用于高功率传输的电容式微机械超声换能器设计
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Feb;52(2):326-39. doi: 10.1109/tuffc.2005.1406558.
5
A new regime for operating capacitive micromachined ultrasonic transducers.一种用于操作电容式微机械超声换能器的新机制。
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Sep;50(9):1184-90. doi: 10.1109/tuffc.2003.1235329.
7
Dynamic analysis of capacitive micromachined ultrasonic transducers.电容式微机械超声换能器的动态分析
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Dec;52(12):2270-5. doi: 10.1109/tuffc.2005.1563269.
9
Deep-collapse operation of capacitive micromachined ultrasonic transducers.电容式微机械超声换能器的深塌陷操作。
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Nov;58(11):2475-83. doi: 10.1109/TUFFC.2011.2104.

引用本文的文献

1
CMUT Fabrication Based On A Thick Buried Oxide Layer.基于厚埋氧层的电容式微机电超声换能器制造
Proc IEEE Ultrason Symp. 2010 Oct;2010:547-550. doi: 10.1109/ULTSYM.2010.5935935.

本文引用的文献

1
CMUT Fabrication Based On A Thick Buried Oxide Layer.基于厚埋氧层的电容式微机电超声换能器制造
Proc IEEE Ultrason Symp. 2010 Oct;2010:547-550. doi: 10.1109/ULTSYM.2010.5935935.
2
High-rangeability ultrasonic gas flowmeter for monitoring flare gas.用于监测火炬气的高量程超声波气体流量计。
IEEE Trans Ultrason Ferroelectr Freq Control. 1989;36(2):144-9. doi: 10.1109/58.19144.
3
Linear and nonlinear equivalent circuit modeling of CMUTs.电容式微机械超声换能器(CMUTs)的线性和非线性等效电路建模
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Dec;52(12):2163-72. doi: 10.1109/tuffc.2005.1563260.
4
A new regime for operating capacitive micromachined ultrasonic transducers.一种用于操作电容式微机械超声换能器的新机制。
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Sep;50(9):1184-90. doi: 10.1109/tuffc.2003.1235329.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验