Kupnik Mario, Vaithilingam Srikant, Torashima Kazutoshi, Wygant Ira O, Khuri-Yakub Butrus T
Edward L. Ginzton Laboratory, Stanford University, Stanford, CA, USA.
Proc IEEE Ultrason Symp. 2010 Oct;2010:547-550. doi: 10.1109/ULTSYM.2010.5935935.
We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required - in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate.
我们介绍了一种用于直接晶圆键合电容式微机电超声换能器(CMUT)的通用制造工艺。目标是打造一个适用于单元素换能器、一维和二维阵列以及可重构阵列的灵活制造平台。主要工艺特点包括:光刻掩膜数量少(对于完全填充的二维阵列只需五个);在标准微机电系统(MEMS)工具上采用简单的制造流程,无需复杂的晶圆处理(载体晶圆);提高了器件可靠性;在工作频率和几何参数(单元直径、间隙高度、有效绝缘层厚度)方面有广阔的设计空间;以及换能器(CMUT 板)的连续正面接地(在医疗应用中可实现良好的信噪比和人体安全屏蔽)。所有这些都是通过厚掩埋氧化物层将热电极单独连接来实现的,即从绝缘体上硅(SOI)衬底的衬底层连接到器件层中每个 CMUT 单元内的硅电极。垂直绝缘沟槽用于将这些硅电极与衬底的其余部分隔离。因此,高电场仅出现在所需位置——器件的真空间隙区域,而不出现在柱区域的绝缘层中。一维和二维阵列元件只需通过在 SOI 衬底的衬底晶圆上蚀刻绝缘沟槽来简单定义。