Suppr超能文献

吡嗪酸可降低质子动力势、呼吸 ATP 合成活性和细胞内 ATP 水平。

Pyrazinoic acid decreases the proton motive force, respiratory ATP synthesis activity, and cellular ATP levels.

机构信息

Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.

出版信息

Antimicrob Agents Chemother. 2011 Nov;55(11):5354-7. doi: 10.1128/AAC.00507-11. Epub 2011 Aug 29.

Abstract

Pyrazinoic acid, the active form of the first-line antituberculosis drug pyrazinamide, decreased the proton motive force and respiratory ATP synthesis rates in subcellular mycobacterial membrane assays. Pyrazinoic acid also significantly lowered cellular ATP levels in Mycobacterium bovis BCG. These results indicate that the predominant mechanism of killing by this drug may operate by depletion of cellular ATP reserves.

摘要

吡嗪酸是一线抗结核药物吡嗪酰胺的活性形式,它降低了亚细胞分枝杆菌膜测定中的质子动力势和呼吸 ATP 合成率。吡嗪酸还显著降低了牛分枝杆菌卡介苗中的细胞 ATP 水平。这些结果表明,这种药物的主要杀菌机制可能是通过耗尽细胞 ATP 储备来实现的。

相似文献

1
Pyrazinoic acid decreases the proton motive force, respiratory ATP synthesis activity, and cellular ATP levels.
Antimicrob Agents Chemother. 2011 Nov;55(11):5354-7. doi: 10.1128/AAC.00507-11. Epub 2011 Aug 29.
2
The Acid-Base Equilibrium of Pyrazinoic Acid Drives the pH Dependence of Pyrazinamide-Induced Growth Inhibition.
ACS Infect Dis. 2020 Nov 13;6(11):3004-3014. doi: 10.1021/acsinfecdis.0c00507. Epub 2020 Oct 20.
3
Nisin depletes ATP and proton motive force in mycobacteria.
Lett Appl Microbiol. 2000 Dec;31(6):416-20. doi: 10.1046/j.1472-765x.2000.00840.x.
4
Antimycobacterial activity of a series of pyrazinoic acid esters.
J Med Chem. 1992 Apr 3;35(7):1212-5. doi: 10.1021/jm00085a007.
5
Effects of weak acids, UV and proton motive force inhibitors on pyrazinamide activity against Mycobacterium tuberculosis in vitro.
J Antimicrob Chemother. 2006 Nov;58(5):936-41. doi: 10.1093/jac/dkl358. Epub 2006 Sep 1.
6
Pyrazinoic acid efflux rate in Mycobacterium tuberculosis is a better proxy of pyrazinamide resistance.
Tuberculosis (Edinb). 2012 Jan;92(1):84-91. doi: 10.1016/j.tube.2011.09.002. Epub 2011 Oct 17.
7
In vitro antimycobacterial activity of 5-chloropyrazinamide.
Antimicrob Agents Chemother. 1998 Feb;42(2):462-3. doi: 10.1128/AAC.42.2.462.
8
Effect of n-octanesulphonylacetamide (OSA) on ATP and protein expression in Mycobacterium bovis BCG.
J Antimicrob Chemother. 2004 Oct;54(4):722-9. doi: 10.1093/jac/dkh408. Epub 2004 Sep 8.
9
Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid.
J Antimicrob Chemother. 2003 Nov;52(5):790-5. doi: 10.1093/jac/dkg446. Epub 2003 Oct 16.
10
Iron enhances the antituberculous activity of pyrazinamide.
J Antimicrob Chemother. 2004 Feb;53(2):192-6. doi: 10.1093/jac/dkh042. Epub 2004 Jan 16.

引用本文的文献

1
Efficacy of novel regimens targeting oxidative phosphorylation in .
Antimicrob Agents Chemother. 2025 Jun 4;69(6):e0001925. doi: 10.1128/aac.00019-25. Epub 2025 Apr 22.
3
Structure activity relationship of pyrazinoic acid analogs as potential antimycobacterial agents.
Bioorg Med Chem. 2022 Nov 15;74:117046. doi: 10.1016/j.bmc.2022.117046. Epub 2022 Oct 7.
4
5
PanD Structure-Function Analysis and Identification of a Potent Pyrazinoic Acid-Derived Enzyme Inhibitor.
ACS Chem Biol. 2021 Jun 18;16(6):1030-1039. doi: 10.1021/acschembio.1c00131. Epub 2021 May 13.
6
Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in .
Front Cell Infect Microbiol. 2021 Jan 11;10:611683. doi: 10.3389/fcimb.2020.611683. eCollection 2020.
7
Mechanistic analysis of A46V, H57Y, and D129N in pyrazinamidase associated with pyrazinamide resistance.
Saudi J Biol Sci. 2020 Nov;27(11):3150-3156. doi: 10.1016/j.sjbs.2020.07.015. Epub 2020 Jul 17.
8
The Bewildering Antitubercular Action of Pyrazinamide.
Microbiol Mol Biol Rev. 2020 Mar 4;84(2). doi: 10.1128/MMBR.00070-19. Print 2020 May 20.
9
Structural Dynamics Behind Clinical Mutants of PncA-Asp12Ala, Pro54Leu, and His57Pro of Associated With Pyrazinamide Resistance.
Front Bioeng Biotechnol. 2019 Dec 10;7:404. doi: 10.3389/fbioe.2019.00404. eCollection 2019.
10
Marine Natural Products and Drug Resistance in Latent Tuberculosis.
Mar Drugs. 2019 Sep 26;17(10):549. doi: 10.3390/md17100549.

本文引用的文献

1
Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase.
PLoS One. 2011;6(8):e23575. doi: 10.1371/journal.pone.0023575. Epub 2011 Aug 17.
2
Dose-dependent activity of pyrazinamide in animal models of intracellular and extracellular tuberculosis infections.
Antimicrob Agents Chemother. 2011 Apr;55(4):1527-32. doi: 10.1128/AAC.01524-10. Epub 2011 Jan 31.
3
The challenge of new drug discovery for tuberculosis.
Nature. 2011 Jan 27;469(7331):483-90. doi: 10.1038/nature09657.
5
ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.
FEMS Microbiol Lett. 2010 Dec;313(1):68-74. doi: 10.1111/j.1574-6968.2010.02123.x. Epub 2010 Oct 7.
7
Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis.
Lancet. 2010 May 22;375(9728):1830-43. doi: 10.1016/S0140-6736(10)60410-2.
8
How antibiotics kill bacteria: from targets to networks.
Nat Rev Microbiol. 2010 Jun;8(6):423-35. doi: 10.1038/nrmicro2333. Epub 2010 May 4.
9
Respiratory ATP synthesis: the new generation of mycobacterial drug targets?
FEMS Microbiol Lett. 2010 Jul 1;308(1):1-7. doi: 10.1111/j.1574-6968.2010.01959.x. Epub 2010 Mar 20.
10
The diarylquinoline TMC207 for multidrug-resistant tuberculosis.
N Engl J Med. 2009 Jun 4;360(23):2397-405. doi: 10.1056/NEJMoa0808427.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验