Suppr超能文献

相似文献

1
Pyrazinoic acid decreases the proton motive force, respiratory ATP synthesis activity, and cellular ATP levels.
Antimicrob Agents Chemother. 2011 Nov;55(11):5354-7. doi: 10.1128/AAC.00507-11. Epub 2011 Aug 29.
2
The Acid-Base Equilibrium of Pyrazinoic Acid Drives the pH Dependence of Pyrazinamide-Induced Growth Inhibition.
ACS Infect Dis. 2020 Nov 13;6(11):3004-3014. doi: 10.1021/acsinfecdis.0c00507. Epub 2020 Oct 20.
3
Nisin depletes ATP and proton motive force in mycobacteria.
Lett Appl Microbiol. 2000 Dec;31(6):416-20. doi: 10.1046/j.1472-765x.2000.00840.x.
4
Antimycobacterial activity of a series of pyrazinoic acid esters.
J Med Chem. 1992 Apr 3;35(7):1212-5. doi: 10.1021/jm00085a007.
5
Effects of weak acids, UV and proton motive force inhibitors on pyrazinamide activity against Mycobacterium tuberculosis in vitro.
J Antimicrob Chemother. 2006 Nov;58(5):936-41. doi: 10.1093/jac/dkl358. Epub 2006 Sep 1.
6
Pyrazinoic acid efflux rate in Mycobacterium tuberculosis is a better proxy of pyrazinamide resistance.
Tuberculosis (Edinb). 2012 Jan;92(1):84-91. doi: 10.1016/j.tube.2011.09.002. Epub 2011 Oct 17.
7
In vitro antimycobacterial activity of 5-chloropyrazinamide.
Antimicrob Agents Chemother. 1998 Feb;42(2):462-3. doi: 10.1128/AAC.42.2.462.
8
Effect of n-octanesulphonylacetamide (OSA) on ATP and protein expression in Mycobacterium bovis BCG.
J Antimicrob Chemother. 2004 Oct;54(4):722-9. doi: 10.1093/jac/dkh408. Epub 2004 Sep 8.
9
Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid.
J Antimicrob Chemother. 2003 Nov;52(5):790-5. doi: 10.1093/jac/dkg446. Epub 2003 Oct 16.
10
Iron enhances the antituberculous activity of pyrazinamide.
J Antimicrob Chemother. 2004 Feb;53(2):192-6. doi: 10.1093/jac/dkh042. Epub 2004 Jan 16.

引用本文的文献

1
Efficacy of novel regimens targeting oxidative phosphorylation in .
Antimicrob Agents Chemother. 2025 Jun 4;69(6):e0001925. doi: 10.1128/aac.00019-25. Epub 2025 Apr 22.
3
Structure activity relationship of pyrazinoic acid analogs as potential antimycobacterial agents.
Bioorg Med Chem. 2022 Nov 15;74:117046. doi: 10.1016/j.bmc.2022.117046. Epub 2022 Oct 7.
4
5
PanD Structure-Function Analysis and Identification of a Potent Pyrazinoic Acid-Derived Enzyme Inhibitor.
ACS Chem Biol. 2021 Jun 18;16(6):1030-1039. doi: 10.1021/acschembio.1c00131. Epub 2021 May 13.
6
Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in .
Front Cell Infect Microbiol. 2021 Jan 11;10:611683. doi: 10.3389/fcimb.2020.611683. eCollection 2020.
7
Mechanistic analysis of A46V, H57Y, and D129N in pyrazinamidase associated with pyrazinamide resistance.
Saudi J Biol Sci. 2020 Nov;27(11):3150-3156. doi: 10.1016/j.sjbs.2020.07.015. Epub 2020 Jul 17.
8
The Bewildering Antitubercular Action of Pyrazinamide.
Microbiol Mol Biol Rev. 2020 Mar 4;84(2). doi: 10.1128/MMBR.00070-19. Print 2020 May 20.
9
Structural Dynamics Behind Clinical Mutants of PncA-Asp12Ala, Pro54Leu, and His57Pro of Associated With Pyrazinamide Resistance.
Front Bioeng Biotechnol. 2019 Dec 10;7:404. doi: 10.3389/fbioe.2019.00404. eCollection 2019.
10
Marine Natural Products and Drug Resistance in Latent Tuberculosis.
Mar Drugs. 2019 Sep 26;17(10):549. doi: 10.3390/md17100549.

本文引用的文献

1
Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase.
PLoS One. 2011;6(8):e23575. doi: 10.1371/journal.pone.0023575. Epub 2011 Aug 17.
2
Dose-dependent activity of pyrazinamide in animal models of intracellular and extracellular tuberculosis infections.
Antimicrob Agents Chemother. 2011 Apr;55(4):1527-32. doi: 10.1128/AAC.01524-10. Epub 2011 Jan 31.
3
The challenge of new drug discovery for tuberculosis.
Nature. 2011 Jan 27;469(7331):483-90. doi: 10.1038/nature09657.
5
ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.
FEMS Microbiol Lett. 2010 Dec;313(1):68-74. doi: 10.1111/j.1574-6968.2010.02123.x. Epub 2010 Oct 7.
7
Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis.
Lancet. 2010 May 22;375(9728):1830-43. doi: 10.1016/S0140-6736(10)60410-2.
8
How antibiotics kill bacteria: from targets to networks.
Nat Rev Microbiol. 2010 Jun;8(6):423-35. doi: 10.1038/nrmicro2333. Epub 2010 May 4.
9
Respiratory ATP synthesis: the new generation of mycobacterial drug targets?
FEMS Microbiol Lett. 2010 Jul 1;308(1):1-7. doi: 10.1111/j.1574-6968.2010.01959.x. Epub 2010 Mar 20.
10
The diarylquinoline TMC207 for multidrug-resistant tuberculosis.
N Engl J Med. 2009 Jun 4;360(23):2397-405. doi: 10.1056/NEJMoa0808427.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验