Suppr超能文献

K-ras(G12V) 转化导致线粒体功能障碍和代谢从氧化磷酸化向糖酵解的转变。

K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis.

机构信息

State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510275, China.

出版信息

Cell Res. 2012 Feb;22(2):399-412. doi: 10.1038/cr.2011.145. Epub 2011 Aug 30.

Abstract

Increased aerobic glycolysis and oxidative stress are important features of cancer cell metabolism, but the underlying biochemical and molecular mechanisms remain elusive. Using a tetracycline inducible model, we show that activation of K-ras(G12V) causes mitochondrial dysfunction, leading to decreased respiration, elevated glycolysis, and increased generation of reactive oxygen species. The K-RAS protein is associated with mitochondria, and induces a rapid suppression of respiratory chain complex-I and a decrease in mitochondrial transmembrane potential by affecting the cyclosporin-sensitive permeability transition pore. Furthermore, pre-induction of K-ras(G12V) expression in vitro to allow metabolic adaptation to high glycolytic metabolism enhances the ability of the transformed cells to form tumor in vivo. Our study suggests that induction of mitochondrial dysfunction is an important mechanism by which K-ras(G12V) causes metabolic changes and ROS stress in cancer cells, and promotes tumor development.

摘要

有氧糖酵解和氧化应激的增加是癌细胞代谢的重要特征,但潜在的生化和分子机制仍难以捉摸。使用四环素诱导模型,我们表明,K-ras(G12V)的激活导致线粒体功能障碍,导致呼吸作用降低、糖酵解升高和活性氧生成增加。K-RAS 蛋白与线粒体相关,并通过影响环孢菌素敏感的通透性转换孔,迅速抑制呼吸链复合物 I 的活性,并降低线粒体跨膜电位。此外,体外预先诱导 K-ras(G12V)的表达,以使代谢适应高糖酵解代谢,增强转化细胞在体内形成肿瘤的能力。我们的研究表明,诱导线粒体功能障碍是 K-ras(G12V)导致癌细胞代谢变化和 ROS 应激的重要机制,并促进肿瘤的发展。

相似文献

3
Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells.
Biochim Biophys Acta. 2010 Feb;1797(2):314-23. doi: 10.1016/j.bbabio.2009.11.006. Epub 2009 Nov 18.
5
Impact of Nrf2 on tumour growth and drug sensitivity in oncogenic K-ras-transformed cells in vitro and in vivo.
Free Radic Res. 2018 Jun;52(6):661-671. doi: 10.1080/10715762.2018.1462494. Epub 2018 May 3.
6
Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth muscle cells.
Redox Biol. 2015 Dec;6:278-286. doi: 10.1016/j.redox.2015.07.016. Epub 2015 Jul 31.
10
Mitochondrial STAT3 supports Ras-dependent oncogenic transformation.
Science. 2009 Jun 26;324(5935):1713-6. doi: 10.1126/science.1171721.

引用本文的文献

2
and drive metabolic reprogramming in pancreatic cancer cells: the influence of oxidative and nitrosatice stress.
Front Cell Dev Biol. 2025 Jun 11;13:1547582. doi: 10.3389/fcell.2025.1547582. eCollection 2025.
5
The Warburg hypothesis and the emergence of the mitochondrial metabolic theory of cancer.
J Bioenerg Biomembr. 2025 Apr 8. doi: 10.1007/s10863-025-10059-w.
6
Cytogenetic signatures favoring metastatic organotropism in colorectal cancer.
Nat Commun. 2025 Apr 5;16(1):3261. doi: 10.1038/s41467-025-58413-1.
7
Wash-free fluorescent tools based on organic molecules: Design principles and biomedical applications.
Exploration (Beijing). 2024 Jun 28;5(1):20230094. doi: 10.1002/EXP.20230094. eCollection 2025 Feb.
8
Energy metabolism in health and diseases.
Signal Transduct Target Ther. 2025 Feb 18;10(1):69. doi: 10.1038/s41392-025-02141-x.

本文引用的文献

2
Biologic correlates of ¹⁸F-FDG uptake on PET in pulmonary pleomorphic carcinoma.
Lung Cancer. 2011 Feb;71(2):144-50. doi: 10.1016/j.lungcan.2010.05.021. Epub 2010 Jun 19.
3
Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells.
Biochim Biophys Acta. 2010 Feb;1797(2):314-23. doi: 10.1016/j.bbabio.2009.11.006. Epub 2009 Nov 18.
4
Understanding the Warburg effect: the metabolic requirements of cell proliferation.
Science. 2009 May 22;324(5930):1029-33. doi: 10.1126/science.1160809.
5
NADPH oxidase 1 plays a critical mediating role in oncogenic Ras-induced vascular endothelial growth factor expression.
Oncogene. 2008 Aug 7;27(34):4724-32. doi: 10.1038/onc.2008.102. Epub 2008 May 5.
6
The permeability transition pore in cell death.
Apoptosis. 2007 May;12(5):841-55. doi: 10.1007/s10495-007-0747-3.
8
Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism.
J Cell Biol. 2006 Dec 18;175(6):913-23. doi: 10.1083/jcb.200512100. Epub 2006 Dec 11.
9
Role of the mitochondrial membrane permeability transition in cell death.
Apoptosis. 2007 May;12(5):835-40. doi: 10.1007/s10495-006-0525-7.
10
Structural and functional consequences of c-N-Ras constitutively associated with intact mitochondria.
Biochim Biophys Acta. 2006 Oct;1763(10):1108-24. doi: 10.1016/j.bbamcr.2006.07.015. Epub 2006 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验