Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India.
Chemistry. 2011 Sep 26;17(40):11152-61. doi: 10.1002/chem.201101906. Epub 2011 Sep 1.
We present novel Schiff base ligands julolidine-carbonohydrazone 1 and julolidine-thiocarbonohydrazone 2 for selective detection of Cu(2+) in aqueous medium. The planar julolidine-based ligands can sense Cu(2+) colorimetrically with characteristic absorbance in the near-infrared (NIR, 700-1000 nm) region. Employing molecular probes 1 and 2 for detection of Cu(2+) not only allowed detection by the naked eye, but also detection of varying micromolar concentrations of Cu(2+) due to the appearance of distinct coloration. Moreover, Cu(2+) selectively quenches the fluorescence of julolidine-thiocarbonohydrazone 2 among all other metal ions, which increases the sensitivity of the probe. Furthermore, quenched fluorescence of the ligand 2 in the presence of Cu(2+) was restored by adjusting the complexation ability of the ligand. Hence, by treatment with ethylenediaminetetraacetic acid (EDTA), thus enabling reversibility and dual-check signaling, julolidine-thiocarbonohydrazone (2) can be used as a fluorescent molecular probe for the sensitive detection of Cu(2+) in biological systems. The ligands 1 and 2 can be utilized to monitor Cu(2+) in aqueous solution over a wide pH range. We have investigated the structural, electronic, and optical properties of the ligands using ab initio density functional theory (DFT) combined with time-dependent density functional theory (TDDFT) calculations. The observed absorption band in the NIR region is attributed to the formation of a charge-transfer complex between Cu(2+) and the ligand. The fluorescence-quenching behavior can be accounted for primarily due to the excited-state ligand 2 to metal (Cu(2+)) charge-transfer (LMCT) processes. Thus, experimentally observed characteristic NIR and fluorescence optical responses of the ligands upon binding to Cu(2+) are well supported by the theoretical calculations. Subsequently, we have employed julolidine-thiocarbonohydrazone 2 for reversible fluorescence sensing of intracellular Cu(2+) in cultured HEK293T cells.
我们提出了新型的席夫碱配体 julolidine-carbonohydrazone 1 和 julolidine-thiocarbonohydrazone 2,用于在水介质中选择性检测 Cu(2+)。基于平面 julolidine 的配体可以通过近红外(NIR,700-1000nm)区域的特征吸收来比色检测 Cu(2+)。使用分子探针 1 和 2 不仅可以通过肉眼检测到 Cu(2+),还可以检测到由于明显的显色而产生的不同微摩尔浓度的 Cu(2+)。此外,Cu(2+)选择性猝灭 julolidine-thiocarbonohydrazone 2 的荧光,从而提高了探针的灵敏度。此外,通过调节配体的络合能力,恢复了存在 Cu(2+)时配体 2 的猝灭荧光。因此,通过用乙二胺四乙酸(EDTA)处理,可以恢复 julolidine-thiocarbonohydrazone(2)的荧光,从而实现可逆性和双重信号检测,使其能够作为荧光分子探针用于生物系统中 Cu(2+)的灵敏检测。配体 1 和 2 可用于在宽 pH 范围内监测水溶液中的 Cu(2+)。我们使用从头算密度泛函理论(DFT)结合含时密度泛函理论(TDDFT)计算研究了配体的结构、电子和光学性质。在 NIR 区域观察到的吸收带归因于 Cu(2+)与配体之间形成的电荷转移络合物。荧光猝灭行为主要归因于激发态配体 2 到金属(Cu(2+))电荷转移(LMCT)过程。因此,实验观察到配体与 Cu(2+)结合后特征性的 NIR 和荧光光学响应得到了理论计算的很好支持。随后,我们在培养的 HEK293T 细胞中使用 julolidine-thiocarbonohydrazone 2 对细胞内 Cu(2+)进行可逆荧光传感。