State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
Plant J. 2011 Dec;68(6):1081-92. doi: 10.1111/j.1365-313X.2011.04761.x. Epub 2011 Oct 10.
Autophagy is a pathway in eukaryotes by which nutrient remobilization occurs through bulk protein and organelle turnover. Autophagy not only aides cells in coping with harsh environments but also plays a key role in many physiological processes that include pollen germination and tube growth. Most autophagic components are conserved among eukaryotes, but phylum-specific molecular components also exist. We show here that Arabidopsis thaliana PTEN, a protein and lipid dual phosphatase homologous to animal PTENs (phosphatase and tensin homologs deleted on chromosome 10), regulates autophagy in pollen tubes by disrupting the dynamics of phosphatidylinositol 3-phosphate (PI3P). The pollen-specific PTEN bound PI3P in vitro and was localized at PI3P-positive vesicles. Overexpression of PTEN caused accumulation of autophagic bodies and resulted in gametophytic male sterility. Such an overexpression effect was dependent upon its lipid phosphatase activity and was inhibited by exogenous PI3P or by expression of a class III phosphatidylinositol 3-kinase (PI3K) that produced PI3P. Overexpression of PTEN disrupted the dynamics of autophagosomes and a subpopulation of endosomes, as shown by altered localization patterns of respective fluorescent markers. Treatment with wortmannin, an inhibitor of class III PI3K, mimicked the effects by PTEN overexpression, which implied a critical role for PI3P dynamics in these processes. Despite sharing evolutionarily conserved catalytic domains, plant PTENs contain regulatory sequences that are distinct from those of animal PTENs, which might underlie their differing membrane association and thereby function. Our results show that PTEN regulates autophagy through phylum-specific molecular mechanisms.
自噬是真核生物中的一种途径,通过该途径,通过大量蛋白质和细胞器的周转率来实现营养再利用。自噬不仅有助于细胞应对恶劣环境,而且在许多生理过程中也起着关键作用,包括花粉萌发和管生长。大多数自噬成分在真核生物中是保守的,但也存在门特异性的分子成分。我们在这里表明,拟南芥 PTEN(与动物 PTENs(10 号染色体上缺失的磷酸酶和张力蛋白同源物)同源的蛋白和脂质双磷酸酶)通过破坏磷脂酰肌醇 3-磷酸(PI3P)的动态来调节花粉管中的自噬。花粉特异性的 PTEN 在体外结合 PI3P,并定位于 PI3P 阳性囊泡上。PTEN 的过表达导致自噬体的积累,并导致配子体雄性不育。这种过表达效应依赖于其脂质磷酸酶活性,并被外源性 PI3P 或表达产生 PI3P 的 III 类磷脂酰肌醇 3-激酶(PI3K)所抑制。PTEN 的过表达破坏了自噬体和内体亚群的动态,这可以通过各自荧光标记物的定位模式改变来证明。用wortmannin(III 类 PI3K 的抑制剂)处理可模拟 PTEN 过表达的效果,这表明 PI3P 动力学在这些过程中起着关键作用。尽管植物 PTENs 与动物 PTENs 共享进化保守的催化结构域,但它们含有独特的调节序列,这可能是它们不同的膜结合及其功能的基础。我们的结果表明,PTEN 通过门特异性的分子机制来调节自噬。