Department of Pathology, University of Cincinnati, Cincinnati, Ohio, United States of America.
PLoS One. 2011;6(8):e23667. doi: 10.1371/journal.pone.0023667. Epub 2011 Aug 17.
The current protocols for generation of induced pluripotent stem (iPS) cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs) using small molecules.
SMs from young male Oct3/4-GFP(+) transgenic mouse were treated with DNA methyltransferase (DNMT) inhibitor, RG108. Two weeks later, GFP(+) colonies of SM derived iPS cells (SiPS) expressing GFP and with morphological similarity of mouse embryonic stem (ESCs) were formed and propagated in vitro. SiPS were positive for alkaline phosphatase activity, expressed SSEA1, displayed ES cell specific pluripotency markers and formed teratoma in nude mice. Optimization of culture conditions for embryoid body (EBs) formation yielded spontaneously contracting EBs having morphological, molecular, and ultra-structural similarities with cardiomyocytes and expressed early and late cardiac markers. miR profiling showed abrogation of let-7 family and upregulation of ESCs specific miR-290-295 cluster thus indicating that SiPS were similar to ESCs in miR profile. Four weeks after transplantation into the immunocompetent mice model of acute myocardial infarction (n = 12 per group), extensive myogenesis was observed in SiPS transplanted hearts as compared to DMEM controls (n = 6 per group). A significant reduction in fibrosis and improvement in global heart function in the hearts transplanted with SiPS derived cardiac progenitor cells were observed.
Reprogramming of SMs by DNMT inhibitor is a simple, reproducible and efficient technique more likely to generate transgene integration-free iPS cells. Cardiac progenitors derived from iPS cells propagated extensively in the infarcted myocardium without tumorgenesis and improved cardiac function.
目前诱导多能干细胞(iPS)的生成方案涉及到基因组整合的病毒载体,这可能会引起肿瘤发生。本研究旨在开发和优化一种非病毒方法,该方法不进行遗传操作,利用小分子对骨骼肌成肌细胞(SM)进行重编程。
从小龄雄性 Oct3/4-GFP(+)转基因鼠的 SM 中分离出 SM,并用 DNA 甲基转移酶(DNMT)抑制剂 RG108 处理。两周后,形成了 GFP(+)集落的 SM 衍生 iPS 细胞(SiPS),其表达 GFP,具有与小鼠胚胎干细胞(ESCs)相似的形态,并在体外进行了扩增。SiPS 对碱性磷酸酶活性呈阳性,表达 SSEA1,显示出 ES 细胞的多能性标记,并在裸鼠中形成畸胎瘤。胚胎体(EBs)形成的培养条件优化产生了自发收缩的 EBs,具有与心肌细胞相似的形态、分子和超微结构,并表达早期和晚期心脏标志物。miR 谱分析显示 let-7 家族的缺失和 ESCs 特异性 miR-290-295 簇的上调,表明 SiPS 在 miR 谱上与 ESCs 相似。将 SiPS 移植到急性心肌梗死的免疫活性小鼠模型中 4 周后(每组 n = 12),与 DMEM 对照组(每组 n = 6)相比,在 SiPS 移植心脏中观察到广泛的肌生成。在 SiPS 衍生的心脏祖细胞移植的心脏中,纤维化显著减少,整体心脏功能得到改善。
DNMT 抑制剂重编程 SM 是一种简单、可重复且高效的技术,更有可能产生无转导基因整合的 iPS 细胞。源自 iPS 细胞的心脏祖细胞在梗死的心肌中广泛扩增,没有致瘤性,并改善了心脏功能。