Suppr超能文献

MHC Ⅱ类配体的结构特性及其对 MHC Ⅱ类表位预测的影响。

Structural properties of MHC class II ligands, implications for the prediction of MHC class II epitopes.

机构信息

Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark.

出版信息

PLoS One. 2010 Dec 30;5(12):e15877. doi: 10.1371/journal.pone.0015877.

Abstract

Major Histocompatibility class II (MHC-II) molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Prediction of MHC class II ligands is complicated by the open binding cleft of the MHC class II molecule, allowing binding of peptides extending out of the binding groove. Furthermore, only a few HLA-DR alleles have been characterized with a sufficient number of peptides (100-200 peptides per allele) to derive accurate description of their binding motif. Little work has been performed characterizing structural properties of MHC class II ligands. Here, we perform one such large-scale analysis. A large set of SYFPEITHI MHC class II ligands covering more than 20 different HLA-DR molecules was analyzed in terms of their secondary structure and surface exposure characteristics in the context of the native structure of the corresponding source protein. We demonstrated that MHC class II ligands are significantly more exposed and have significantly more coil content than other peptides in the same protein with similar predicted binding affinity. We next exploited this observation to derive an improved prediction method for MHC class II ligands by integrating prediction of MHC- peptide binding with prediction of surface exposure and protein secondary structure. This combined prediction method was shown to significantly outperform the state-of-the-art MHC class II peptide binding prediction method when used to identify MHC class II ligands. We also tried to integrate N- and O-glycosylation in our prediction methods but this additional information was found not to improve prediction performance. In summary, these findings strongly suggest that local structural properties influence antigen processing and/or the accessibility of peptides to the MHC class II molecule.

摘要

主要组织相容性复合体 II (MHC-II) 分子从细胞外空间中采样肽段,使免疫系统能够从该隔室检测外来微生物的存在。MHC Ⅱ类配体的预测受到 MHC Ⅱ类分子开放结合腔的复杂性的影响,允许结合延伸出结合槽的肽段。此外,只有少数 HLA-DR 等位基因具有足够数量的肽段(每个等位基因 100-200 个肽段)来准确描述其结合基序。对 MHC Ⅱ类配体的结构特性进行了很少的研究。在这里,我们进行了这样的大规模分析。在天然结构的背景下,对涵盖 20 多种不同 HLA-DR 分子的大量 SYFPEITHI MHC Ⅱ类配体进行了二级结构和表面暴露特性的分析。我们证明,与同一蛋白质中具有相似预测结合亲和力的其他肽段相比,MHC Ⅱ类配体的暴露程度显著更高,且具有更多的无规卷曲含量。接下来,我们利用这一观察结果,通过整合 MHC-肽结合预测、表面暴露预测和蛋白质二级结构预测,开发了一种改进的 MHC Ⅱ类配体预测方法。当用于识别 MHC Ⅱ类配体时,该联合预测方法的性能明显优于最先进的 MHC Ⅱ类肽结合预测方法。我们还尝试在我们的预测方法中整合 N-和 O-糖基化,但发现这些额外信息并不能提高预测性能。总之,这些发现强烈表明局部结构特性会影响抗原加工和/或肽段与 MHC Ⅱ类分子的可及性。

相似文献

1
Structural properties of MHC class II ligands, implications for the prediction of MHC class II epitopes.
PLoS One. 2010 Dec 30;5(12):e15877. doi: 10.1371/journal.pone.0015877.
3
TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules.
PLoS One. 2012;7(2):e30483. doi: 10.1371/journal.pone.0030483. Epub 2012 Feb 23.
7
Determination of a Predictive Cleavage Motif for Eluted Major Histocompatibility Complex Class II Ligands.
Front Immunol. 2018 Aug 6;9:1795. doi: 10.3389/fimmu.2018.01795. eCollection 2018.
8
Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
Bioinformatics. 2004 Jun 12;20(9):1388-97. doi: 10.1093/bioinformatics/bth100. Epub 2004 Feb 12.
9
MHC class II epitope predictive algorithms.
Immunology. 2010 Jul;130(3):319-28. doi: 10.1111/j.1365-2567.2010.03268.x. Epub 2010 Apr 12.
10
Predicting Class II MHC-Peptide binding: a kernel based approach using similarity scores.
BMC Bioinformatics. 2006 Nov 14;7:501. doi: 10.1186/1471-2105-7-501.

引用本文的文献

2
MHCEpitopeEnergy, a Flexible Rosetta-Based Biotherapeutic Deimmunization Platform.
J Chem Inf Model. 2021 May 24;61(5):2368-2382. doi: 10.1021/acs.jcim.1c00056. Epub 2021 Apr 26.
3
Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy.
Front Immunol. 2020 Feb 24;11:283. doi: 10.3389/fimmu.2020.00283. eCollection 2020.
4
Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes.
Curr Top Med Chem. 2018;18(26):2239-2255. doi: 10.2174/1568026619666181224101744.
5
Integrated computational prediction and experimental validation identifies promiscuous T cell epitopes in the proteome of .
Microb Genom. 2016 Aug 25;2(8):e000071. doi: 10.1099/mgen.0.000071. eCollection 2016 Aug.
6
Predicting Hemagglutinin MHC-II Ligand Analogues in Anti-TNFα Biologics: Implications for Immunogenicity of Pharmaceutical Proteins.
PLoS One. 2015 Aug 13;10(8):e0135451. doi: 10.1371/journal.pone.0135451. eCollection 2015.
7
Immunogenic peptide discovery in cancer genomes.
Curr Opin Genet Dev. 2015 Feb;30:7-16. doi: 10.1016/j.gde.2014.12.003. Epub 2015 Jan 12.
8
Mechanisms of HIV protein degradation into epitopes: implications for vaccine design.
Viruses. 2014 Aug 21;6(8):3271-92. doi: 10.3390/v6083271.
9
CD4+ T cells provide intermolecular help to generate robust antibody responses in vaccinia virus-vaccinated humans.
J Immunol. 2013 Jun 15;190(12):6023-33. doi: 10.4049/jimmunol.1202523. Epub 2013 May 10.

本文引用的文献

1
MHC class II epitope predictive algorithms.
Immunology. 2010 Jul;130(3):319-28. doi: 10.1111/j.1365-2567.2010.03268.x. Epub 2010 Apr 12.
2
NetCTLpan: pan-specific MHC class I pathway epitope predictions.
Immunogenetics. 2010 Jun;62(6):357-68. doi: 10.1007/s00251-010-0441-4. Epub 2010 Apr 9.
6
Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan.
PLoS Comput Biol. 2008 Jul 4;4(7):e1000107. doi: 10.1371/journal.pcbi.1000107.
8
The universal protein resource (UniProt).
Nucleic Acids Res. 2008 Jan;36(Database issue):D190-5. doi: 10.1093/nar/gkm895. Epub 2007 Nov 27.
9
Antigen three-dimensional structure guides the processing and presentation of helper T-cell epitopes.
Mol Immunol. 2007 Feb;44(6):1159-68. doi: 10.1016/j.molimm.2006.06.014. Epub 2006 Aug 8.
10
EpiJen: a server for multistep T cell epitope prediction.
BMC Bioinformatics. 2006 Mar 13;7:131. doi: 10.1186/1471-2105-7-131.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验