Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
Phys Chem Chem Phys. 2011 Oct 14;13(38):16941-54. doi: 10.1039/c0cp02934c. Epub 2011 Sep 1.
The interest in following the evolution of the valence electronic structure of atoms and molecules during chemical reactions on a femtosecond time scale is discussed. By explicitly mapping the occupied part of the electronic structure with femtosecond pump-probe schemes one essentially follows the electrons making the bonds while the bonds change. This holds the key to unprecedented insight into chemical bonding in short-lived intermediates and reveals the coupled motion of electrons and nuclei. Examples from the recent literature on small molecules and anionic clusters in the gas phase and on atoms and molecules on surfaces using lab-based femtosecond laser methods are used to demonstrate the case. They highlight how the evolution of the valence electronic structure can be probed with time-resolved photoelectron spectroscopy with ultraviolet (UV) probe photon energies of up to 6 eV. It is shown how new insight can be gained by extending the probing wavelength into the vacuum-ultraviolet (VUV) region to photon energies of 20 eV and more by accessing the whole occupied valence electronic structure with time-resolved VUV photoelectron spectroscopy. Finally, the importance of soft X-ray free-electron lasers with probe photon energies of several hundred eV and femtosecond pulses and in particular the key role of femtosecond time-resolved soft X-ray emission spectroscopy or resonant inelastic X-ray scattering for mapping the electronic structure during chemical reactions is discussed.
讨论了在飞秒时间尺度上跟踪化学反应中原子和分子价电子结构演变的兴趣。通过明确地用飞秒泵浦-探测方案映射电子结构的占据部分,人们基本上可以跟踪形成键的电子,而键在变化。这是深入了解短寿命中间体中化学键的关键,揭示了电子和核的耦合运动。使用基于实验室的飞秒激光方法,从最近的气相中小分子和阴离子团以及表面上的原子和分子的文献中选取了一些例子,以证明这种情况。它们强调了如何通过使用高达 6 eV 的紫外 (UV) 探针光子能量的时间分辨光电子能谱来探测价电子结构的演化。展示了如何通过将探测波长扩展到真空紫外 (VUV) 区域,使用时间分辨 VUV 光电子能谱来获取 20 eV 及更高的光子能量,从而获得整个占据价电子结构的新见解。最后,讨论了具有数百电子伏特和飞秒脉冲的探针光子能量的软 X 射线自由电子激光器的重要性,特别是飞秒时间分辨软 X 射线发射光谱学或共振非弹性 X 射线散射在化学反应过程中映射电子结构的关键作用。