Department of Anatomy and Cell Biology, The University of Tokushima Graduate School, Tokushima, Japan.
Nanomedicine. 2012 Jul;8(5):627-36. doi: 10.1016/j.nano.2011.08.009. Epub 2011 Sep 1.
We investigated size-dependent uptake of fluorescent thiol-organosilica particles by Peyer's patches (PPs). We performed an oral single-particle administration (95, 130, 200, 340, 695 and 1050 nm) and a simultaneous dual-particle administration using 2 kinds of particles. Histological imaging and quantitative analysis revealed that particles taken up by the PP subepithelial dome were size dependent, and there was an optimal size range for higher uptake. Quantitative analysis of simultaneous dual-particle administration revealed that the percentage of fluorescence areas for 95, 130, 200, 340, 695 and 1050 nm with respect to 110 nm area was 124.0, 89.1, 73.8, 20.2, 9.2 and 0.5%, respectively. Additionally, imaging using fluorescent thiol-organosilica particles could detect 2 novel pathways through mouse PP epithelium: the transcellular pathway and the paracellular pathway. The uptake of nanoparticles based on an optimal size range and 2 novel pathways could indicate a new approach for vaccine delivery and nanomedicine development.
Studying various sizes of fluorescent organosilica particles and their uptake in Peyer's patches, this team of authors determined the optimal size range of administration. Two novel pathways through mouse Peyer's patch epithelium were detected, i.e., the transcellular pathway and the paracellular pathway. This observation may have important applications in future vaccine delivery and nano-drug delivery.
我们研究了荧光巯基有机硅粒子通过派伊尔氏结(PP)的尺寸依赖性摄取。我们进行了单次口服给药(95、130、200、340、695 和 1050nm)和同时使用 2 种粒子的双重粒子给药。组织学成像和定量分析表明,被 PP 黏膜下层穹窿摄取的粒子是尺寸依赖性的,并且存在更高摄取的最佳尺寸范围。同时双重粒子给药的定量分析表明,相对于 110nm 面积,95、130、200、340、695 和 1050nm 荧光面积的百分比分别为 124.0、89.1、73.8、20.2、9.2 和 0.5%。此外,使用荧光巯基有机硅粒子的成像可以检测到通过小鼠 PP 上皮的 2 种新途径:细胞旁路途径和细胞旁途径。基于最佳尺寸范围和 2 种新途径的纳米粒子摄取可以为疫苗传递和纳米医学发展提供新方法。
本研究小组研究了不同大小的荧光有机硅粒子及其在派尔氏结中的摄取,确定了最佳给药尺寸范围。检测到了通过小鼠派伊尔氏结上皮的两种新途径,即细胞旁路途径和细胞旁途径。这一观察结果可能对未来的疫苗传递和纳米药物传递具有重要应用价值。