Suppr超能文献

利用纳米材料靶向肠道黏膜免疫系统

Targeting the Gut Mucosal Immune System Using Nanomaterials.

作者信息

McCright Jacob, Ramirez Ann, Amosu Mayowa, Sinha Arnav, Bogseth Amanda, Maisel Katharina

机构信息

Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA.

出版信息

Pharmaceutics. 2021 Oct 21;13(11):1755. doi: 10.3390/pharmaceutics13111755.

Abstract

The gastrointestinal (GI) tract is one the biggest mucosal surface in the body and one of the primary targets for the delivery of therapeutics, including immunotherapies. GI diseases, including, e.g., inflammatory bowel disease and intestinal infections such as cholera, pose a significant public health burden and are on the rise. Many of these diseases involve inflammatory processes that can be targeted by immune modulatory therapeutics. However, nonspecific targeting of inflammation systemically can lead to significant side effects. This can be avoided by locally targeting therapeutics to the GI tract and its mucosal immune system. In this review, we discuss nanomaterial-based strategies targeting the GI mucosal immune system, including gut-associated lymphoid tissues, tissue resident immune cells, as well as GI lymph nodes, to modulate GI inflammation and disease outcomes, as well as take advantage of some of the primary mechanisms of GI immunity such as oral tolerance.

摘要

胃肠道(GI)是人体最大的黏膜表面之一,也是包括免疫疗法在内的治疗药物递送的主要靶点之一。胃肠道疾病,如炎症性肠病和霍乱等肠道感染,给公众健康带来了重大负担,且呈上升趋势。这些疾病中的许多都涉及炎症过程,可通过免疫调节疗法进行靶向治疗。然而,全身性非特异性靶向炎症可能会导致严重的副作用。通过将治疗药物局部靶向胃肠道及其黏膜免疫系统,可以避免这种情况。在这篇综述中,我们讨论了基于纳米材料的靶向胃肠道黏膜免疫系统的策略,包括肠道相关淋巴组织、组织驻留免疫细胞以及胃肠道淋巴结,以调节胃肠道炎症和疾病结局,并利用胃肠道免疫的一些主要机制,如口服耐受。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38bc/8619927/cc02f0daaee6/pharmaceutics-13-01755-g001.jpg

相似文献

1
Targeting the Gut Mucosal Immune System Using Nanomaterials.
Pharmaceutics. 2021 Oct 21;13(11):1755. doi: 10.3390/pharmaceutics13111755.
2
Microbial-gut interactions in health and disease. Mucosal immune responses.
Best Pract Res Clin Gastroenterol. 2004 Apr;18(2):387-404. doi: 10.1016/j.bpg.2003.11.002.
3
Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases.
Immunol Lett. 2004 May 15;93(2-3):97-108. doi: 10.1016/j.imlet.2004.02.005.
4
Present Scenario of M-Cell Targeting Ligands for Oral Mucosal Immunization.
Curr Drug Targets. 2020;21(12):1276-1284. doi: 10.2174/1389450121666200609113252.
5
Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract.
J Exp Med. 2013 Aug 26;210(9):1871-88. doi: 10.1084/jem.20122762. Epub 2013 Aug 19.
6
Mucosal immunity: implications for vaccine development.
Immunobiology. 1992 Feb;184(2-3):157-79. doi: 10.1016/S0171-2985(11)80473-0.
7
A comprehensive understanding of the gut mucosal immune system in allergic inflammation.
Allergol Int. 2019 Jan;68(1):17-25. doi: 10.1016/j.alit.2018.09.004. Epub 2018 Oct 23.
8
Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad.
Scand J Gastroenterol. 2017 Nov;52(11):1185-1193. doi: 10.1080/00365521.2017.1349173. Epub 2017 Jul 12.
9
A Dietary Cholesterol-Based Intestinal Inflammation Assay for Improving Drug-Discovery on Inflammatory Bowel Diseases.
Front Cell Dev Biol. 2021 Jun 3;9:674749. doi: 10.3389/fcell.2021.674749. eCollection 2021.
10
Enteric α-defensins on the verge of intestinal immune tolerance and inflammation.
Semin Cell Dev Biol. 2019 Apr;88:138-146. doi: 10.1016/j.semcdb.2018.01.007. Epub 2018 Feb 1.

引用本文的文献

1
Nanoparticle-Driven Modulation of Mucosal Immunity and Interplay with the Microbiome.
J Microbiol Biotechnol. 2025 Jun 12;35:e2404033. doi: 10.4014/jmb.2504.04033.
2
Immune Modulation with Oral DNA/RNA Nanoparticles.
Pharmaceutics. 2025 May 4;17(5):609. doi: 10.3390/pharmaceutics17050609.
3
Overcoming Biopotency Barriers: Advanced Oral Delivery Strategies for Enhancing the Efficacy of Bioactive Food Ingredients.
Adv Sci (Weinh). 2024 Nov;11(44):e2401172. doi: 10.1002/advs.202401172. Epub 2024 Oct 3.
4
A clinician's perspective on the new organ mesentery and non-vascular mesenteropathies.
Front Physiol. 2024 Sep 4;15:1336908. doi: 10.3389/fphys.2024.1336908. eCollection 2024.
5
Oral Cell-Targeted Delivery Systems Constructed of Edible Materials: Advantages and Challenges.
Molecules. 2022 Nov 17;27(22):7991. doi: 10.3390/molecules27227991.
7
Nasal Nanovaccines for SARS-CoV-2 to Address COVID-19.
Vaccines (Basel). 2022 Mar 8;10(3):405. doi: 10.3390/vaccines10030405.

本文引用的文献

1
Mucosal vaccines - fortifying the frontiers.
Nat Rev Immunol. 2022 Apr;22(4):236-250. doi: 10.1038/s41577-021-00583-2. Epub 2021 Jul 26.
2
Nano and Microparticles as Potential Oral Vaccine Carriers and Adjuvants Against Infectious Diseases.
Front Pharmacol. 2021 Jun 2;12:682286. doi: 10.3389/fphar.2021.682286. eCollection 2021.
3
Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics.
Nat Nanotechnol. 2021 Sep;16(9):1030-1038. doi: 10.1038/s41565-021-00928-x. Epub 2021 Jun 17.
4
Human gut-associated lymphoid tissues (GALT); diversity, structure, and function.
Mucosal Immunol. 2021 Jul;14(4):793-802. doi: 10.1038/s41385-021-00389-4. Epub 2021 Mar 22.
5
Transmucosal Solid Lipid Nanoparticles to Improve Genistein Absorption via Intestinal Lymphatic Transport.
Pharmaceutics. 2021 Feb 16;13(2):267. doi: 10.3390/pharmaceutics13020267.
6
Identification, isolation and analysis of human gut-associated lymphoid tissues.
Nat Protoc. 2021 Apr;16(4):2051-2067. doi: 10.1038/s41596-020-00482-1. Epub 2021 Feb 22.
8
Intestinal delivery in a long-chain fatty acid formulation enables lymphatic transport and systemic exposure of orlistat.
Int J Pharm. 2021 Mar 1;596:120247. doi: 10.1016/j.ijpharm.2021.120247. Epub 2021 Jan 22.
10
The Lymphatic Vasculature in the 21 Century: Novel Functional Roles in Homeostasis and Disease.
Cell. 2020 Jul 23;182(2):270-296. doi: 10.1016/j.cell.2020.06.039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验