Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.
Genetics. 2011 Nov;189(3):825-36. doi: 10.1534/genetics.111.131839. Epub 2011 Sep 2.
The yeast transcriptional activator Gal4 localizes to UAS(GAL) sites even in the absence of galactose but cannot activate transcription due to an association with the Gal80 protein. By 4 min after galactose addition, Gal4-activated gene transcription ensues. It is well established that this rapid induction arises through a galactose-triggered association between the Gal80 and Gal3 proteins that decreases the association of Gal80 and Gal4. How this happens mechanistically remains unclear. Strikingly different hypotheses prevail concerning the possible roles of nucleocytoplasmic distribution and trafficking of Gal3 and Gal80 and where in the cell the initial Gal3-Gal80 association occurs. Here we tested two conflicting hypotheses by evaluating the subcellular distribution and dynamics of Gal3 and Gal80 with reference to induction kinetics. We determined that the rates of nucleocytoplasmic trafficking for both Gal80 and Gal3 are slow relative to the rate of induction. We find that depletion of the nuclear pool of Gal3 slows the induction kinetics. Thus, nuclear Gal3 is critical for rapid induction. Fluorescence-recovery-after-photobleaching experiments provided data suggesting that the Gal80-Gal4 complex exhibits kinetic stability in the absence of galactose. Finally, we detect Gal3 at the UAS(GAL) only if Gal80 is covalently linked to the DNA-binding domain. Taken altogether, these new findings lead us to propose that a transient interaction of Gal3 with Gal4-associated Gal80 could explain the rapid response of this system. This notion could also explain earlier observations.
酵母转录激活因子 Gal4 即使在没有半乳糖的情况下也能定位到 UAS(GAL) 位点,但由于与 Gal80 蛋白的结合,无法激活转录。在添加半乳糖 4 分钟后,Gal4 激活的基因转录就会发生。人们已经充分认识到,这种快速诱导是通过 Gal80 和 Gal3 蛋白之间的半乳糖触发的关联产生的,这种关联降低了 Gal80 和 Gal4 的结合。这种机制是如何发生的仍然不清楚。关于 Gal3 和 Gal80 的核质分布和运输以及 Gal3-Gal80 最初结合发生在细胞的哪个部位,存在着截然不同的假设。在这里,我们通过评估 Gal3 和 Gal80 的亚细胞分布和动力学来检验两个相互矛盾的假设,并参考诱导动力学。我们确定,Gal80 和 Gal3 的核质转运速率相对于诱导速率都很慢。我们发现,耗尽核内 Gal3 池会减缓诱导动力学。因此,核内 Gal3 对快速诱导至关重要。荧光恢复后光漂白实验提供的数据表明,在没有半乳糖的情况下,Gal80-Gal4 复合物表现出动力学稳定性。最后,只有当 Gal80 与 DNA 结合域共价连接时,我们才能在 UAS(GAL) 上检测到 Gal3。总而言之,这些新发现使我们提出,Gal3 与 Gal4 相关的 Gal80 之间的瞬时相互作用可以解释该系统的快速反应。这一概念也可以解释早期的观察结果。