Suppr超能文献

89Zr-纳米胶体白蛋白 PET/CT 淋巴闪烁显像用于头颈部癌症前哨淋巴结检测:临床前结果。

89Zr-nanocolloidal albumin-based PET/CT lymphoscintigraphy for sentinel node detection in head and neck cancer: preclinical results.

机构信息

Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands.

出版信息

J Nucl Med. 2011 Oct;52(10):1580-4. doi: 10.2967/jnumed.111.089557. Epub 2011 Sep 2.

Abstract

UNLABELLED

Identifying sentinel nodes near the primary tumor remains a problem in, for example, head and neck cancer because of the limited resolution of current lymphoscintigraphic imaging when using (99m)Tc-nanocolloidal albumin. This study describes the development and evaluation of a nanocolloidal albumin-based tracer specifically dedicated for high-resolution PET detection.

METHODS

(89)Zr was coupled to nanocolloidal albumin via the bifunctional chelate p-isothiocyanatobenzyldesferrioxamine B. Quality control tests, including particle size measurements, and in vivo biodistribution and imaging experiments in a rabbit lymphogenic metastasis model were performed.

RESULTS

Coupling of (89)Zr to nanocolloidal albumin appeared to be efficient, resulting in a stable product with a radiochemical purity greater than 95%, without affecting the particle size. PET showed distinguished uptake of (89)Zr-nanocolloidal albumin in the sentinel nodes, with visualization of lymphatic vessels, and with a biodistribution comparable to (99m)Tc-nanocolloidal albumin.

CONCLUSION

(89)Zr-nanocolloidal albumin is a promising tracer for sentinel node detection by PET.

摘要

未标记

例如,由于当前使用 (99m)Tc-纳米白蛋白进行淋巴闪烁成像时的分辨率有限,因此在头颈部癌症中,靠近原发性肿瘤的前哨淋巴结的识别仍然是一个问题。本研究描述了一种专门用于高分辨率 PET 检测的基于纳米白蛋白的示踪剂的开发和评估。

方法

通过双功能螯合剂对异硫氰酸苯甲基去铁胺 B 将 (89)Zr 偶联到纳米白蛋白上。进行了质量控制测试,包括粒径测量以及在兔淋巴转移模型中的体内生物分布和成像实验。

结果

(89)Zr 与纳米白蛋白的偶联似乎很有效,生成了一种放射性化学纯度大于 95%的稳定产物,而不会影响粒径。PET 显示出 (89)Zr-纳米白蛋白在前哨淋巴结中的摄取明显增加,可显示淋巴管,并具有与 (99m)Tc-纳米白蛋白相当的生物分布。

结论

(89)Zr-纳米白蛋白是一种有前途的通过 PET 检测前哨淋巴结的示踪剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验