Suppr超能文献

遗传学激活结构:利用遗传相互作用研究核糖体生物发生的动态。

Genetics animates structure: leveraging genetic interactions to study the dynamics of ribosome biogenesis.

机构信息

Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.

出版信息

Curr Genet. 2021 Oct;67(5):729-738. doi: 10.1007/s00294-021-01187-y. Epub 2021 Apr 12.

Abstract

The assembly of eukaryotic ribosomes follows an assembly line-like pathway in which numerous trans-acting biogenesis factors act on discrete pre-ribosomal intermediates to progressively shape the nascent subunits into their final functional architecture. Recent advances in cryo-electron microscopy have led to high-resolution structures of many pre-ribosomal intermediates; however, these static snapshots do not capture the dynamic transitions between these intermediates. To this end, molecular genetics can be leveraged to reveal how the biogenesis factors drive these dynamic transitions. Here, we briefly review how we recently used the deletion of BUD23 (bud23∆) to understand its role in the assembly of the ribosomal small subunit. The strong growth defect of bud23∆ mutants places a selective pressure on yeast cells for the occurrence of extragenic suppressors that define a network of functional interactions among biogenesis factors. Mapping these suppressing mutations to recently published structures of pre-ribosomal complexes allowed us to contextualize these suppressing mutations and derive a detailed model in which Bud23 promotes a critical transition event to facilitate folding of the central pseudoknot of the small subunit. This mini-review highlights how genetics can be used to understand the dynamics of complex structures, such as the maturing ribosome.

摘要

真核核糖体的组装遵循流水线样的途径,在此过程中,许多反式作用的生物发生因子作用于离散的前核糖体中间产物,逐渐将新生亚基塑造成其最终的功能结构。最近的低温电子显微镜技术的进展导致了许多前核糖体中间产物的高分辨率结构;然而,这些静态快照并没有捕获这些中间产物之间的动态转变。为此,可以利用分子遗传学来揭示生物发生因子如何驱动这些动态转变。在这里,我们简要回顾了我们最近如何利用 BUD23(bud23∆)的缺失来了解其在核糖体小亚基组装中的作用。bud23∆突变体的强烈生长缺陷对酵母细胞施加了选择性压力,使其发生外显子抑制突变,从而定义了生物发生因子之间的功能相互作用网络。将这些抑制突变映射到最近发表的前核糖体复合物结构上,使我们能够将这些抑制突变置于上下文中,并得出一个详细的模型,其中 Bud23 促进了一个关键的转变事件,以促进小亚基中心假结的折叠。这篇迷你综述强调了遗传学如何用于理解复杂结构(如成熟核糖体)的动力学。

相似文献

1
Genetics animates structure: leveraging genetic interactions to study the dynamics of ribosome biogenesis.
Curr Genet. 2021 Oct;67(5):729-738. doi: 10.1007/s00294-021-01187-y. Epub 2021 Apr 12.
2
Bud23 promotes the final disassembly of the small subunit Processome in Saccharomyces cerevisiae.
PLoS Genet. 2020 Dec 11;16(12):e1009215. doi: 10.1371/journal.pgen.1009215. eCollection 2020 Dec.
3
Release of the ribosome biogenesis factor Bud23 from small subunit precursors in yeast.
RNA. 2022 Mar;28(3):371-389. doi: 10.1261/rna.079025.121. Epub 2021 Dec 21.
5
Bud23 methylates G1575 of 18S rRNA and is required for efficient nuclear export of pre-40S subunits.
Mol Cell Biol. 2008 May;28(10):3151-61. doi: 10.1128/MCB.01674-07. Epub 2008 Mar 10.
7
Utp14 Recruits and Activates the RNA Helicase Dhr1 To Undock U3 snoRNA from the Preribosome.
Mol Cell Biol. 2016 Jan 4;36(6):965-78. doi: 10.1128/MCB.00773-15.
8
Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5518-26. doi: 10.1073/pnas.1413089111. Epub 2014 Dec 8.
9
Eukaryotic Ribosome Assembly.
Annu Rev Biochem. 2024 Aug;93(1):189-210. doi: 10.1146/annurev-biochem-030222-113611. Epub 2024 Jul 2.
10
An emerging mechanism for the maturation of the Small Subunit Processome.
Curr Opin Struct Biol. 2022 Apr;73:102331. doi: 10.1016/j.sbi.2022.102331. Epub 2022 Feb 14.

引用本文的文献

2
Fzr regulates silk gland growth by promoting endoreplication and protein synthesis in the silkworm.
PLoS Genet. 2023 Jan 18;19(1):e1010602. doi: 10.1371/journal.pgen.1010602. eCollection 2023 Jan.
3
The dual nature of the nucleolus.
Genes Dev. 2022 Jul 1;36(13-14):765-769. doi: 10.1101/gad.349748.122.
5
Release of the ribosome biogenesis factor Bud23 from small subunit precursors in yeast.
RNA. 2022 Mar;28(3):371-389. doi: 10.1261/rna.079025.121. Epub 2021 Dec 21.

本文引用的文献

1
Structure of the Maturing 90S Pre-ribosome in Association with the RNA Exosome.
Mol Cell. 2021 Jan 21;81(2):293-303.e4. doi: 10.1016/j.molcel.2020.11.009. Epub 2020 Dec 15.
2
Bud23 promotes the final disassembly of the small subunit Processome in Saccharomyces cerevisiae.
PLoS Genet. 2020 Dec 11;16(12):e1009215. doi: 10.1371/journal.pgen.1009215. eCollection 2020 Dec.
4
Structural overview of macromolecular machines involved in ribosome biogenesis.
Curr Opin Struct Biol. 2021 Apr;67:51-60. doi: 10.1016/j.sbi.2020.09.003. Epub 2020 Oct 21.
5
Cryo-EM structure of 90 small ribosomal subunit precursors in transition states.
Science. 2020 Sep 18;369(6510):1477-1481. doi: 10.1126/science.aba9690.
6
90 pre-ribosome transformation into the primordial 40 subunit.
Science. 2020 Sep 18;369(6510):1470-1476. doi: 10.1126/science.abb4119.
7
Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States.
Mol Cell. 2019 Dec 19;76(6):938-952.e5. doi: 10.1016/j.molcel.2019.09.025. Epub 2019 Oct 24.
8
Thermophile 90S Pre-ribosome Structures Reveal the Reverse Order of Co-transcriptional 18S rRNA Subdomain Integration.
Mol Cell. 2019 Sep 19;75(6):1256-1269.e7. doi: 10.1016/j.molcel.2019.06.032. Epub 2019 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验