Suppr超能文献

对形态发生素双尾蚴梯度潜在运输机制的评估。

Assessment of Transport Mechanisms Underlying the Bicoid Morphogen Gradient.

作者信息

Castle Brian T, Howard Stephen A, Odde David J

机构信息

Department of Biomedical Engineering University of Minnesota, Minneapolis, Minnesota, 55455, USA.

出版信息

Cell Mol Bioeng. 2011 Mar;4(1):116-121. doi: 10.1007/s12195-010-0157-4.

Abstract

Morphogen gradients dictate the spatial patterning of multicellular organisms and are established via transport mechanisms. One of the best-characterized morphogens, Bicoid, acts as a polarity determinant in the Drosophila embryo through spatial-temporal control of gap gene expression. The prevailing model for establishment of the gradient has been localized anterior translation, subsequent diffusion, and spatially uniform degradation, consistent with the observed exponential anterior-posterior decay. However, a recent direct measurement of the Bicoid diffusion coefficient via fluorescence recovery after photobleaching (FRAP) resulted in a surprisingly low estimate, which challenged the prevailing model and led to more complicated active transport models. Here, we reassessed this conclusion using a detailed computational model of the FRAP experiment and analysis. In our model, we found disagreement between the input diffusion coefficient and the resulting estimated diffusion coefficient, as measured by previous methods. By using the model to reproduce the original data, we estimate that Bicoid's mitotic diffusion coefficient is 3-fold larger than the originally reported value. Thus, the long-standing diffusive transport model still holds.

摘要

形态发生素梯度决定了多细胞生物的空间模式,并通过运输机制得以建立。其中一个特征最为明确的形态发生素——双胸蛋白(Bicoid),通过对间隙基因表达的时空控制,在果蝇胚胎中充当极性决定因子。建立该梯度的主流模型是局部前侧翻译、随后扩散以及空间均匀降解,这与观察到的前后指数衰减相一致。然而,最近通过光漂白后荧光恢复(FRAP)对双胸蛋白扩散系数进行的直接测量得出了一个惊人的低估值,这对主流模型提出了挑战,并催生了更为复杂的主动运输模型。在此,我们使用FRAP实验和分析的详细计算模型重新评估了这一结论。在我们的模型中,我们发现输入扩散系数与先前方法测量所得的估计扩散系数之间存在差异。通过使用该模型重现原始数据,我们估计双胸蛋白的有丝分裂扩散系数比最初报道的值大3倍。因此,长期存在的扩散运输模型仍然成立。

相似文献

1
Assessment of Transport Mechanisms Underlying the Bicoid Morphogen Gradient.
Cell Mol Bioeng. 2011 Mar;4(1):116-121. doi: 10.1007/s12195-010-0157-4.
2
Hydrodynamic modeling of Bicoid morphogen gradient formation in Drosophila embryo.
Biomech Model Mechanobiol. 2016 Dec;15(6):1765-1773. doi: 10.1007/s10237-016-0796-z. Epub 2016 May 19.
3
Messages do diffuse faster than messengers: reconciling disparate estimates of the morphogen bicoid diffusion coefficient.
PLoS Comput Biol. 2014 Jun 5;10(6):e1003629. doi: 10.1371/journal.pcbi.1003629. eCollection 2014 Jun.
4
The formation of the Bicoid morphogen gradient requires protein movement from anteriorly localized mRNA.
PLoS Biol. 2011 Mar;9(3):e1000596. doi: 10.1371/journal.pbio.1000596. Epub 2011 Mar 1.
5
Stability and nuclear dynamics of the bicoid morphogen gradient.
Cell. 2007 Jul 13;130(1):141-52. doi: 10.1016/j.cell.2007.05.026.
6
On the importance of protein diffusion in biological systems: The example of the Bicoid morphogen gradient.
Biochim Biophys Acta Proteins Proteom. 2017 Nov;1865(11 Pt B):1676-1686. doi: 10.1016/j.bbapap.2017.09.002. Epub 2017 Sep 13.
7
Determining the scale of the Bicoid morphogen gradient.
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1710-5. doi: 10.1073/pnas.0807655106. Epub 2009 Feb 3.
8
Master equation simulation analysis of immunostained Bicoid morphogen gradient.
BMC Syst Biol. 2007 Nov 16;1:52. doi: 10.1186/1752-0509-1-52.
9
Pre-steady-state decoding of the Bicoid morphogen gradient.
PLoS Biol. 2007 Feb;5(2):e46. doi: 10.1371/journal.pbio.0050046.
10

引用本文的文献

2
Embryonic geometry underlies phenotypic variation in decanalized conditions.
Elife. 2020 Feb 12;9:e47380. doi: 10.7554/eLife.47380.
3
RNA localization requires the -Golgi network.
Hereditas. 2019 Sep 10;156:30. doi: 10.1186/s41065-019-0106-8. eCollection 2019.
4
Seeing is believing: the Bicoid protein reveals its path.
Hereditas. 2018 Sep 11;155:28. doi: 10.1186/s41065-018-0067-3. eCollection 2018.
5
Bicoid gradient formation mechanism and dynamics revealed by protein lifetime analysis.
Mol Syst Biol. 2018 Sep 4;14(9):e8355. doi: 10.15252/msb.20188355.
6
Quantitative diffusion measurements using the open-source software PyFRAP.
Nat Commun. 2018 Apr 20;9(1):1582. doi: 10.1038/s41467-018-03975-6.
8
Mobility of signaling molecules: the key to deciphering plant organogenesis.
J Plant Res. 2015 Jan;128(1):17-25. doi: 10.1007/s10265-014-0692-5. Epub 2014 Dec 17.
10
Morphogen transport.
Development. 2013 Apr;140(8):1621-38. doi: 10.1242/dev.083519.

本文引用的文献

1
Multiscale modeling of diffusion in the early Drosophila embryo.
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10092-6. doi: 10.1073/pnas.1001139107. Epub 2010 May 17.
2
The bicoid morphogen system.
Curr Biol. 2010 Mar 9;20(5):R249-54. doi: 10.1016/j.cub.2010.01.026.
3
Determining the scale of the Bicoid morphogen gradient.
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1710-5. doi: 10.1073/pnas.0807655106. Epub 2009 Feb 3.
4
Formation of the bicoid morphogen gradient: an mRNA gradient dictates the protein gradient.
Development. 2009 Feb;136(4):605-14. doi: 10.1242/dev.031195.
5
Re-examining the stability of the Bicoid morphogen gradient.
Cell. 2008 Jan 11;132(1):15-7; author reply 17-8. doi: 10.1016/j.cell.2007.12.022.
6
Stability and nuclear dynamics of the bicoid morphogen gradient.
Cell. 2007 Jul 13;130(1):141-52. doi: 10.1016/j.cell.2007.05.026.
7
Diffusion and scaling during early embryonic pattern formation.
Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18403-7. doi: 10.1073/pnas.0509483102. Epub 2005 Dec 13.
8
Two-photon microscopy of cells and tissue.
Circ Res. 2004 Dec 10;95(12):1154-66. doi: 10.1161/01.RES.0000150593.30324.42.
9
Seeing is believing: the bicoid morphogen gradient matures.
Cell. 2004 Jan 23;116(2):143-52. doi: 10.1016/s0092-8674(04)00037-6.
10
Establishment of developmental precision and proportions in the early Drosophila embryo.
Nature. 2002 Feb 14;415(6873):798-802. doi: 10.1038/415798a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验