Biomedical Image Technologies Lab, ETSI Telecomunicación, Universidad Politécnica de Madrid, Spain.
Curr Opin Genet Dev. 2011 Oct;21(5):630-7. doi: 10.1016/j.gde.2011.08.001. Epub 2011 Sep 3.
The digital reconstruction of the embryogenesis of model organisms from 3D+time data is revolutionizing practices in quantitative and integrative Developmental Biology. A manual and fully supervised image analysis of the massive complex data acquired with new microscopy technologies is no longer an option and automated image processing methods are required to fully exploit the potential of imaging data for biological insights. Current developments and challenges in biological image processing include algorithms for microscopy multiview fusion, cell nucleus tracking for quasi-perfect lineage reconstruction, segmentation, and validation methodologies for cell membrane shape identification, single cell gene expression quantification from in situ hybridization data, and multidimensional image registration algorithms for the construction of prototypic models. These tools will be essential to ultimately produce the multilevel in toto reconstruction that combines the cell lineage tree, cells, and tissues structural information and quantitative gene expression data in its spatio-temporal context throughout development.
从 3D+时间数据中对模式生物的胚胎发生进行数字重建正在彻底改变定量和综合发育生物学的实践。使用新的显微镜技术获取的大量复杂数据,手动和完全监督的图像分析不再是一种选择,需要自动化的图像处理方法来充分利用成像数据在生物学洞察力方面的潜力。目前生物学图像处理方面的发展和挑战包括显微镜多视图融合算法、准完美谱系重建的细胞核跟踪、细胞膜形状识别的分割和验证方法、来自原位杂交数据的单细胞基因表达定量以及用于构建原型模型的多维图像配准算法。这些工具对于最终生成多层次的整体重建至关重要,该重建将在整个发育过程中结合细胞谱系树、细胞和组织的结构信息以及定量基因表达数据及其时空背景。