Suppr超能文献

利用傅里叶变换红外光谱法预测碱预处理生物质酶水解糖化。

Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses.

机构信息

School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, New York 14853, USA.

出版信息

Biotechnol Bioeng. 2012 Feb;109(2):353-62. doi: 10.1002/bit.23314. Epub 2011 Sep 9.

Abstract

Fourier transform infrared, attenuated total reflectance (FTIR-ATR) spectroscopy combined with partial least squares (PLS) regression accurately predicted 72-h glucose and xylose conversions (g sugars/100 g potential sugars) and yields (g sugars/100 g dry solids) from cellulase-mediated hydrolysis of alkali-pretreated lignocellulose. Six plant biomasses that represent a variety of potential biofuel feedstocks--two switchgrass cultivars, big bluestem grass, a low-impact, high-diversity mixture of 32 species of prairie biomasses, mixed hardwood, and corn stover--were subjected to four levels of low-temperature NaOH pretreatment to produce 24 samples with a wide range of potential digestibility. PLS models were constructed by correlating FTIR spectra of pretreated samples to measured values of gluose and xylose conversions and yields. Variable selection, based on 90% confidence intervals of regression-coefficient matrices, improved the predictive ability of the models, while simplifying them considerably. Final models predicted sugar conversions with coefficient of determination for cross-validation (Q(2)) values of 0.90 for glucose and 0.89 for xylose, and sugar yields with Q(2) values of 0.92 for glucose and 0.91 for xylose. The sugar-yield models are noteworthy for their ability to predict enzymatic saccharification per mass dry solids without a priori knowledge of the composition of the solids. All peaks retained in the final regression coefficient matrices were previously assigned to chemical bonds and functional groups in lignocellulose, demonstrating that the models were based on real chemical information. This study demonstrates that FTIR spectroscopy combined with PLS regression can be used to rapidly estimate sugar conversions and yields from enzymatic hydrolysis of pretreated plant biomass.

摘要

傅里叶变换红外衰减全反射(FTIR-ATR)光谱结合偏最小二乘法(PLS)回归准确预测了纤维素酶介导的碱预处理木质纤维素水解中 72 小时葡萄糖和木糖转化率(g 糖/100g 潜在糖)和产率(g 糖/100g 干固体)。六种植物生物质代表了各种潜在的生物燃料原料——两种柳枝稷品种、大蓝草、由 32 种草原生物混合而成的低影响、高多样性混合物、混合硬木和玉米秸秆——经过低温 NaOH 预处理四个水平,生成 24 个具有广泛潜在可消化性的样本。通过将预处理样品的 FTIR 光谱与葡萄糖和木糖转化率和产率的测量值相关联,构建 PLS 模型。基于回归系数矩阵的 90%置信区间的变量选择提高了模型的预测能力,同时大大简化了模型。最终模型预测糖转化率的交叉验证决定系数(Q(2))值为葡萄糖 0.90 和木糖 0.89,预测糖产率的 Q(2)值为葡萄糖 0.92 和木糖 0.91。糖产率模型值得注意的是,它们能够预测每单位干固体质量的酶解糖化,而无需事先了解固体的组成。最终回归系数矩阵中保留的所有峰都以前被分配给木质纤维素中的化学键和官能团,这表明模型基于真实的化学信息。本研究表明,FTIR 光谱结合 PLS 回归可用于快速估计预处理植物生物质的酶解糖化转化率和产率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验