Department of Chemistry and Centre for Materials Discovery, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK.
J Am Chem Soc. 2011 Oct 19;133(41):16566-71. doi: 10.1021/ja2056374. Epub 2011 Sep 23.
Control over pore size, shape, and connectivity in synthetic porous materials is important in applications such as separation, storage, and catalysis. Crystalline organic cage molecules can exhibit permanent porosity, but there are few synthetic methods to control the crystal packing and hence the pore connectivity. Typically, porosity is either 'intrinsic' (within the molecules) or 'extrinsic' (between the molecules)--but not both. We report a supramolecular approach to the assembly of porous organic cages which involves bulky directing groups that frustrate the crystal packing. This generates, in a synthetically designed fashion, additional 'extrinsic' porosity between the intrinsically porous cage units. One of the molecular crystals exhibits an apparent Brunauer-Emmett-Teller surface area of 854 m(2) g(-1), which is higher than that of unfunctionalized cages of the same dimensions. Moreover, connectivity between pores, and hence guest uptakes, can be modulated by the introduction of halogen bonding motifs in the cage modules. This suggests a broader approach to the supramolecular engineering of porosity in molecular organic crystals.
在分离、存储和催化等应用中,对合成多孔材料的孔径、形状和连通性的控制非常重要。结晶有机笼状分子具有永久的多孔性,但控制晶体堆积从而控制孔连通性的合成方法却很少。通常,孔隙率要么是“内在的”(在分子内),要么是“外在的”(在分子间)——但不是两者兼有。我们报告了一种涉及大体积导向基团的组装多孔有机笼的超分子方法,这些基团阻碍了晶体堆积。以合成设计的方式,在内在多孔笼单元之间产生了额外的“外在”多孔性。其中一个分子晶体的表观 Brunauer-Emmett-Teller 比表面积为 854 m(2) g(-1),高于相同尺寸的未功能化笼的比表面积。此外,通过在笼模块中引入卤键模体,可以调节孔之间的连通性,从而调节客体的吸收。这表明在分子有机晶体中进行孔隙率的超分子工程有更广泛的方法。