Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, USA.
Antioxid Redox Signal. 2012 Feb 1;16(3):193-201. doi: 10.1089/ars.2011.3980. Epub 2011 Nov 23.
Redox regulation of cellular processes is an important mechanism that operates in organisms from bacteria to mammals. Much of the redox control is provided by thiol oxidoreductases: proteins that employ cysteine residues for redox catalysis. We wanted to identify thiol oxidoreductases on a genome-wide scale and use this information to obtain insights into the general principles of thiol-based redox control.
Thiol oxidoreductases were identified by three independent methods that took advantage of the occurrence of selenocysteine homologs of these proteins and functional linkages among thiol oxidoreductases revealed by comparative genomics. Based on these searches, we describe thioredoxomes, which are sets of thiol oxidoreductases in organisms. Their analyses revealed that these proteins are present in all living organisms, generally account for 0.5%-1% of the proteome and that their use correlates with proteome size, distinguishing these proteins from those involved in core metabolic functions. We further describe thioredoxomes of Saccharomyces cerevisiae and humans, including proteins which have not been characterized previously. Thiol oxidoreductases occur in various cellular compartments and are enriched in the endoplasmic reticulum and cytosol.
We developed bioinformatics methods and used them to characterize thioredoxomes on a genome-wide scale, which in turn revealed properties of thioredoxomes.
These data provide information about organization and properties of thiol-based redox control, whose use is increased with the increase in complexity of organisms. Our data also show an essential combined function of a set of thiol oxidoreductases, and of thiol-based redox regulation in general, in all living organisms.
细胞过程的氧化还原调控是一种重要的机制,它在从细菌到哺乳动物的生物体中发挥作用。氧化还原调控的很大一部分是由硫醇氧化还原酶提供的:这些蛋白质利用半胱氨酸残基进行氧化还原催化。我们希望在全基因组范围内识别硫醇氧化还原酶,并利用这些信息深入了解基于硫醇的氧化还原控制的一般原理。
通过三种独立的方法识别硫醇氧化还原酶,这些方法利用了这些蛋白质的硒代半胱氨酸类似物的存在和比较基因组学揭示的硫醇氧化还原酶之间的功能联系。基于这些搜索,我们描述了硫氧还蛋白体,即生物体中一组硫醇氧化还原酶。它们的分析表明,这些蛋白质存在于所有生物体中,通常占蛋白质组的 0.5%-1%,并且它们的使用与蛋白质组大小相关,将这些蛋白质与参与核心代谢功能的蛋白质区分开来。我们进一步描述了酿酒酵母和人类的硫氧还蛋白体,包括以前未被描述的蛋白质。硫醇氧化还原酶存在于各种细胞区室中,在内质网和细胞质中富集。
我们开发了生物信息学方法,并将其用于在全基因组范围内对硫氧还蛋白体进行特征描述,这反过来又揭示了硫氧还蛋白体的性质。
这些数据提供了关于基于硫醇的氧化还原控制的组织和性质的信息,其使用随着生物体复杂性的增加而增加。我们的数据还表明,一组硫醇氧化还原酶以及一般的基于硫醇的氧化还原调节在所有生物体中都具有基本的联合功能。