Suppr超能文献

硫醇氧化还原酶的比较基因组学揭示了基于硫醇的细胞过程氧化还原调控的广泛而重要的功能。

Comparative genomics of thiol oxidoreductases reveals widespread and essential functions of thiol-based redox control of cellular processes.

机构信息

Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, USA.

出版信息

Antioxid Redox Signal. 2012 Feb 1;16(3):193-201. doi: 10.1089/ars.2011.3980. Epub 2011 Nov 23.

Abstract

AIMS

Redox regulation of cellular processes is an important mechanism that operates in organisms from bacteria to mammals. Much of the redox control is provided by thiol oxidoreductases: proteins that employ cysteine residues for redox catalysis. We wanted to identify thiol oxidoreductases on a genome-wide scale and use this information to obtain insights into the general principles of thiol-based redox control.

RESULTS

Thiol oxidoreductases were identified by three independent methods that took advantage of the occurrence of selenocysteine homologs of these proteins and functional linkages among thiol oxidoreductases revealed by comparative genomics. Based on these searches, we describe thioredoxomes, which are sets of thiol oxidoreductases in organisms. Their analyses revealed that these proteins are present in all living organisms, generally account for 0.5%-1% of the proteome and that their use correlates with proteome size, distinguishing these proteins from those involved in core metabolic functions. We further describe thioredoxomes of Saccharomyces cerevisiae and humans, including proteins which have not been characterized previously. Thiol oxidoreductases occur in various cellular compartments and are enriched in the endoplasmic reticulum and cytosol.

INNOVATION

We developed bioinformatics methods and used them to characterize thioredoxomes on a genome-wide scale, which in turn revealed properties of thioredoxomes.

CONCLUSION

These data provide information about organization and properties of thiol-based redox control, whose use is increased with the increase in complexity of organisms. Our data also show an essential combined function of a set of thiol oxidoreductases, and of thiol-based redox regulation in general, in all living organisms.

摘要

目的

细胞过程的氧化还原调控是一种重要的机制,它在从细菌到哺乳动物的生物体中发挥作用。氧化还原调控的很大一部分是由硫醇氧化还原酶提供的:这些蛋白质利用半胱氨酸残基进行氧化还原催化。我们希望在全基因组范围内识别硫醇氧化还原酶,并利用这些信息深入了解基于硫醇的氧化还原控制的一般原理。

结果

通过三种独立的方法识别硫醇氧化还原酶,这些方法利用了这些蛋白质的硒代半胱氨酸类似物的存在和比较基因组学揭示的硫醇氧化还原酶之间的功能联系。基于这些搜索,我们描述了硫氧还蛋白体,即生物体中一组硫醇氧化还原酶。它们的分析表明,这些蛋白质存在于所有生物体中,通常占蛋白质组的 0.5%-1%,并且它们的使用与蛋白质组大小相关,将这些蛋白质与参与核心代谢功能的蛋白质区分开来。我们进一步描述了酿酒酵母和人类的硫氧还蛋白体,包括以前未被描述的蛋白质。硫醇氧化还原酶存在于各种细胞区室中,在内质网和细胞质中富集。

创新

我们开发了生物信息学方法,并将其用于在全基因组范围内对硫氧还蛋白体进行特征描述,这反过来又揭示了硫氧还蛋白体的性质。

结论

这些数据提供了关于基于硫醇的氧化还原控制的组织和性质的信息,其使用随着生物体复杂性的增加而增加。我们的数据还表明,一组硫醇氧化还原酶以及一般的基于硫醇的氧化还原调节在所有生物体中都具有基本的联合功能。

相似文献

1
Comparative genomics of thiol oxidoreductases reveals widespread and essential functions of thiol-based redox control of cellular processes.
Antioxid Redox Signal. 2012 Feb 1;16(3):193-201. doi: 10.1089/ars.2011.3980. Epub 2011 Nov 23.
3
Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae.
Biochemistry. 2010 Sep 7;49(35):7709-21. doi: 10.1021/bi100677a.
5
A structure-based approach for detection of thiol oxidoreductases and their catalytic redox-active cysteine residues.
PLoS Comput Biol. 2009 May;5(5):e1000383. doi: 10.1371/journal.pcbi.1000383. Epub 2009 May 8.
6
Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2015 Nov;99(22):9771-8. doi: 10.1007/s00253-015-6847-z. Epub 2015 Aug 4.
7
Depletion of thiol reducing capacity impairs cytosolic but not mitochondrial iron-sulfur protein assembly machineries.
Biochim Biophys Acta Mol Cell Res. 2019 Feb;1866(2):240-251. doi: 10.1016/j.bbamcr.2018.11.003. Epub 2018 Nov 10.
9
ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin.
Nature. 2003 Oct 30;425(6961):980-4. doi: 10.1038/nature02075.
10
Disulfide transfer between two conserved cysteine pairs imparts selectivity to protein oxidation by Ero1.
Mol Biol Cell. 2006 May;17(5):2256-66. doi: 10.1091/mbc.e05-05-0417. Epub 2006 Feb 22.

引用本文的文献

1
Programmed Deviations of Ribosomes From Standard Decoding in Archaea.
Front Microbiol. 2021 Jun 4;12:688061. doi: 10.3389/fmicb.2021.688061. eCollection 2021.
2
NADPH-dependent and -independent disulfide reductase systems.
Free Radic Biol Med. 2018 Nov 1;127:248-261. doi: 10.1016/j.freeradbiomed.2018.03.051. Epub 2018 Mar 30.
4
Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in Staphylococcus aureus.
Antioxid Redox Signal. 2018 Sep 1;29(7):615-636. doi: 10.1089/ars.2017.7354. Epub 2018 Jan 30.
6
Lokiarchaeota Marks the Transition between the Archaeal and Eukaryotic Selenocysteine Encoding Systems.
Mol Biol Evol. 2016 Sep;33(9):2441-53. doi: 10.1093/molbev/msw122. Epub 2016 Jul 12.
7
Redox Pioneer: Professor Vadim N. Gladyshev.
Antioxid Redox Signal. 2016 Jul 1;25(1):1-9. doi: 10.1089/ars.2015.6625. Epub 2016 May 24.
8
New drug target in protozoan parasites: the role of thioredoxin reductase.
Front Microbiol. 2015 Sep 30;6:975. doi: 10.3389/fmicb.2015.00975. eCollection 2015.
9
Mechanism-based proteomic screening identifies targets of thioredoxin-like proteins.
J Biol Chem. 2015 Feb 27;290(9):5685-95. doi: 10.1074/jbc.M114.597245. Epub 2015 Jan 5.
10
Selenoproteins: molecular pathways and physiological roles.
Physiol Rev. 2014 Jul;94(3):739-77. doi: 10.1152/physrev.00039.2013.

本文引用的文献

1
Mechanisms of oxidative protein folding in the bacterial cell envelope.
Antioxid Redox Signal. 2010 Oct;13(8):1231-46. doi: 10.1089/ars.2010.3187.
2
Disulfide formation in the ER and mitochondria: two solutions to a common process.
Science. 2009 Jun 5;324(5932):1284-7. doi: 10.1126/science.1170653.
3
Functions and evolution of selenoprotein methionine sulfoxide reductases.
Biochim Biophys Acta. 2009 Nov;1790(11):1471-7. doi: 10.1016/j.bbagen.2009.04.014. Epub 2009 May 4.
5
Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis.
Arch Toxicol. 2008 May;82(5):273-99. doi: 10.1007/s00204-008-0304-z. Epub 2008 Apr 29.
6
Methionine sulfoxide reductase A and a dietary supplement S-methyl-L-cysteine prevent Parkinson's-like symptoms.
J Neurosci. 2007 Nov 21;27(47):12808-16. doi: 10.1523/JNEUROSCI.0322-07.2007.
7
DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase.
Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14807-12. doi: 10.1073/pnas.0703219104. Epub 2007 Aug 31.
8
Comparative genomics of protists: new insights into the evolution of eukaryotic signal transduction and gene regulation.
Annu Rev Microbiol. 2007;61:453-75. doi: 10.1146/annurev.micro.61.080706.093309.
10
High-throughput identification of catalytic redox-active cysteine residues.
Science. 2007 Jan 19;315(5810):387-9. doi: 10.1126/science.1133114.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验