Suppr超能文献

基于特征的形态计量学在精神分裂症分类中的应用。

Classification of schizophrenia using feature-based morphometry.

机构信息

Department of Computer Science, University of Verona, Verona, Italy.

出版信息

J Neural Transm (Vienna). 2012 Mar;119(3):395-404. doi: 10.1007/s00702-011-0693-7. Epub 2011 Sep 9.

Abstract

The objective of this study was to use a combined local descriptor, namely scale invariance feature transform (SIFT), and a non linear support vector machine (SVM) technique to automatically classify patients with schizophrenia. The dorsolateral prefrontal cortex (DLPFC), considered a reliable neuroanatomical marker of the disease, was chosen as region of interest (ROI). Fifty-four schizophrenia patients and 54 age- and gender-matched normal controls were studied with a 1.5T MRI (slice thickness 1.25 mm). Three steps were conducted: (1) landmark detection and description of the DLPFC, (2) feature vocabulary construction and Bag-of-Words (BoW) computation for brain representation, (3) SVM classification which adopted the local kernel to implicitly implement the feature matching. Moreover, a new weighting approach was proposed to take into account the discriminant relevance of the detected groups of features. Substantial results were obtained for the classification of the whole dataset (left side 75%, right side 66.38%). The performances were higher when females (left side 84.09%, right side 77.27%) and seniors (left side 81.25%, right side 70.83%) were considered separately. In general, the supervised weighed functions increased the efficacy in all the analyses. No effects of age, gender, antipsychotic treatment and chronicity were shown on DLPFC volumes. This integrated innovative ROI-SVM approach allows to reliably detect subjects with schizophrenia, based on a structural brain marker for the disease such as the DLPFC. Such classification should be performed in first-episode patients in future studies, by considering males and females separately.

摘要

本研究旨在采用局部描述符(即尺度不变特征变换(SIFT))和非线性支持向量机(SVM)技术,自动对精神分裂症患者进行分类。选择背外侧前额叶皮层(DLPFC)作为感兴趣区(ROI),它被认为是疾病的可靠神经解剖学标志物。本研究共纳入 54 例精神分裂症患者和 54 名年龄和性别匹配的正常对照,采用 1.5T MRI 进行扫描(层厚 1.25mm)。研究分为三个步骤进行:(1)DLPFC 的标记点检测和描述;(2)特征词汇构建和大脑表示的词袋(BoW)计算;(3)采用局部核函数来隐式实现特征匹配的 SVM 分类。此外,还提出了一种新的加权方法,以考虑检测到的特征组的判别相关性。整体数据集的分类得到了显著结果(左侧 75%,右侧 66.38%)。当分别考虑女性(左侧 84.09%,右侧 77.27%)和老年人(左侧 81.25%,右侧 70.83%)时,分类效果更高。一般来说,监督加权函数增加了所有分析的效果。年龄、性别、抗精神病药物治疗和慢性因素对 DLPFC 体积没有影响。这种基于 DLPFC 等疾病结构脑标志物的综合创新 ROI-SVM 方法,可以可靠地检测出精神分裂症患者。在未来的研究中,应该对首发患者进行这种分类,并分别考虑男性和女性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验