Squarcina Letizia, Castellani Umberto, Bellani Marcella, Perlini Cinzia, Lasalvia Antonio, Dusi Nicola, Bonetto Chiara, Cristofalo Doriana, Tosato Sarah, Rambaldelli Gianluca, Alessandrini Franco, Zoccatelli Giada, Pozzi-Mucelli Roberto, Lamonaca Dario, Ceccato Enrico, Pileggi Francesca, Mazzi Fausto, Santonastaso Paolo, Ruggeri Mirella, Brambilla Paolo
UOC Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), Italy; InterUniversity Centre for Behavioural Neurosciences (ICBN), University of Verona, Verona, Italy.
Department of Informatics, University of Verona, Verona, Italy.
Neuroimage. 2017 Jan 15;145(Pt B):238-245. doi: 10.1016/j.neuroimage.2015.12.007. Epub 2015 Dec 12.
First episode psychosis (FEP) patients are of particular interest for neuroimaging investigations because of the absence of confounding effects due to medications and chronicity. Nonetheless, imaging data are prone to heterogeneity because for example of age, gender or parameter setting differences. With this work, we wanted to take into account possible nuisance effects of age and gender differences across dataset, not correcting the data as a pre-processing step, but including the effect of nuisance covariates in the classification phase. To this aim, we developed a method which, based on multiple kernel learning (MKL), exploits the effect of these confounding variables with a subject-depending kernel weighting procedure. We applied this method to a dataset of cortical thickness obtained from structural magnetic resonance images (MRI) of 127 FEP patients and 127 healthy controls, who underwent either a 3Tesla (T) or a 1.5T MRI acquisition. We obtained good accuracies, notably better than those obtained with standard SVM or MKL methods, up to more than 80% for frontal and temporal areas. To our best knowledge, this is the largest classification study in FEP population, showing that fronto-temporal cortical thickness can be used as a potential marker to classify patients with psychosis.
首发精神病(FEP)患者因其未受药物和病程的混杂影响而成为神经影像学研究的特别关注点。尽管如此,成像数据容易出现异质性,例如由于年龄、性别或参数设置差异。通过这项工作,我们希望考虑跨数据集的年龄和性别差异可能产生的干扰效应,不是在预处理步骤中对数据进行校正,而是在分类阶段纳入干扰协变量的影响。为此,我们开发了一种基于多核学习(MKL)的方法,通过依赖于受试者的核加权程序利用这些混杂变量的影响。我们将此方法应用于从127例FEP患者和127例健康对照的结构磁共振成像(MRI)获得的皮质厚度数据集,这些患者和对照接受了3特斯拉(T)或1.5T的MRI扫描。我们获得了良好的准确率,显著优于使用标准支持向量机(SVM)或MKL方法获得的准确率,额叶和颞叶区域的准确率高达80%以上。据我们所知,这是FEP人群中最大规模的分类研究,表明额颞叶皮质厚度可作为对精神病患者进行分类的潜在标志物。