James H. Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, California, USA.
Nat Med. 2011 Feb;17(2):223-8. doi: 10.1038/nm.2292. Epub 2011 Jan 16.
The combination of intravital microscopy and animal models of disease has propelled studies of disease mechanisms and treatments. However, many disorders afflict tissues inaccessible to light microscopy in live subjects. Here we introduce cellular-level time-lapse imaging deep within the live mammalian brain by one- and two-photon fluorescence microendoscopy over multiple weeks. Bilateral imaging sites allowed longitudinal comparisons within individual subjects, including of normal and diseased tissues. Using this approach, we tracked CA1 hippocampal pyramidal neuron dendrites in adult mice, revealing these dendrites' extreme stability and rare examples of their structural alterations. To illustrate disease studies, we tracked deep lying gliomas by observing tumor growth, visualizing three-dimensional vasculature structure and determining microcirculatory speeds. Average erythrocyte speeds in gliomas declined markedly as the disease advanced, notwithstanding significant increases in capillary diameters. Time-lapse microendoscopy will be applicable to studies of numerous disorders, including neurovascular, neurological, cancerous and trauma-induced conditions.
活体显微镜技术与疾病动物模型相结合,推动了疾病机制和治疗方法的研究。然而,许多疾病会影响活体对象中无法用光学显微镜观察到的组织。本文通过单光子和双光子荧光显微内镜术,在数周内对活体哺乳动物大脑进行了细胞水平的延时成像,实现了对深层组织的检测。双侧成像部位可实现个体内的纵向比较,包括正常和病变组织。利用这种方法,我们对成年小鼠 CA1 海马锥体神经元的树突进行了跟踪,揭示了这些树突的极高稳定性和极少数结构改变的实例。为了说明疾病研究,我们通过观察肿瘤生长、可视化三维血管结构和确定微循环速度,对深部胶质瘤进行了跟踪。尽管毛细血管直径显著增加,但胶质瘤中的平均红细胞速度随着疾病的发展明显下降。延时显微内镜术将适用于多种疾病的研究,包括神经血管、神经、癌症和创伤诱导性疾病。