Suppr超能文献

谷氨酸能神经递质传递中的神经元-胶质相互作用:氧化和糖酵解三磷酸腺苷作为能量来源的作用。

Neuron-glia interactions in glutamatergic neurotransmission: roles of oxidative and glycolytic adenosine triphosphate as energy source.

机构信息

Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.

出版信息

J Neurosci Res. 2011 Dec;89(12):1926-34. doi: 10.1002/jnr.22746. Epub 2011 Sep 14.

Abstract

Glutamatergic neurotransmission accounts for a considerable part of energy consumption related to signaling in the brain. Chemical energy is provided by adenosine triphosphate (ATP) formed in glycolysis and tricarboxylic acid (TCA) cycle combined with oxidative phosphorylation. It is not clear whether ATP generated in these pathways is equivalent in relation to fueling of the energy-requiring processes, i.e., vesicle filling, transport, and enzymatic processing in the glutamatergic tripartite synapse (the astrocyte and pre- and postsynapse). The role of astrocytic glycogenolysis in maintaining theses processes also has not been fully elucidated. Cultured astrocytes and neurons were utilized to monitor these processes related to glutamatergic neurotransmission. Inhibitors of glycolysis and TCA cycle in combination with pathway-selective substrates were used to study glutamate uptake and release monitored with D-aspartate. Western blotting of glyceraldehyde-3-P dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK) was performed to determine whether these enzymes are associated with the cell membrane. We show that ATP formed in glycolysis is superior to that generated by oxidative phosphorylation in providing energy for glutamate uptake both in astrocytes and in neurons. The neuronal vesicular glutamate release was less dependent on glycolytic ATP. Dependence of glutamate uptake on glycolytic ATP may be at least partially explained by a close association in the membrane of GAPDH and PGK and the glutamate transporters. It may be suggested that these enzymes form a complex with the transporters and the Na(+) /K(+) -ATPase, the latter providing the sodium gradient required for the transport process.

摘要

谷氨酸能神经传递占大脑信号相关能量消耗的相当一部分。化学能由糖酵解和三羧酸 (TCA) 循环与氧化磷酸化相结合形成的三磷酸腺苷 (ATP) 提供。目前尚不清楚这些途径中产生的 ATP 在为能量需求过程(即囊泡填充、运输和谷氨酸能三突触体(星形胶质细胞和突触前和突触后)中的酶处理)提供燃料方面是否等效。星形胶质细胞糖酵解在维持这些过程中的作用也尚未完全阐明。利用培养的星形胶质细胞和神经元来监测与谷氨酸能神经传递相关的这些过程。使用糖酵解和 TCA 循环抑制剂以及途径选择性底物来研究谷氨酸摄取和释放,用 D-天冬氨酸进行监测。进行甘油醛-3-P 脱氢酶 (GAPDH) 和磷酸甘油酸激酶 (PGK) 的 Western 印迹,以确定这些酶是否与细胞膜相关。我们表明,在为星形胶质细胞和神经元中的谷氨酸摄取提供能量方面,糖酵解中形成的 ATP 优于氧化磷酸化中产生的 ATP。神经元囊泡谷氨酸释放对糖酵解 ATP 的依赖性较低。谷氨酸摄取对糖酵解 ATP 的依赖性至少部分可以通过 GAPDH 和 PGK 与谷氨酸转运体在膜中的紧密关联来解释。可以提出这些酶与转运体和 Na(+) /K(+) -ATP 酶形成复合物,后者为转运过程提供所需的钠离子梯度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验