Suppr超能文献

聚(己内酯)/氧化石墨烯生物复合材料:力学性能与生物活性。

Poly(ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity.

机构信息

Department of Mechanical and Manufacturing Engineering and Trinity Center for Bioengineering, Trinity College Dublin, Dublin 2, Ireland.

出版信息

Biomed Mater. 2011 Oct;6(5):055010. doi: 10.1088/1748-6041/6/5/055010. Epub 2011 Sep 16.

Abstract

Biomedical applications of graphene have recently attracted intensive attention, with graphene-based nanomaterials being reported as promising candidates in, for example, drug delivery, biosensing and bioimaging. In this paper, mechanical properties and bioactivity of nanofibrous and porous membranes electrospun from graphene oxide (GO) nanoplatelets reinforced poly(ε-caprolactone) (PCL) were investigated. The results showed that the presence of 0.3 wt% GO increased the tensile strength, modulus and energy at break of the PCL membrane by 95%, 66% and 416%, respectively, while improving its bioactivity during biomineralization and maintaining the high porosity of over 94%. The mechanical enhancements were ascribed to the change in the fiber morphology and the reinforcing effect of GO on PCL nanofibers, whereas the improvements on the bioactivity stemmed from the anionic functional groups present on the GO surface that nucleated the formation of biominerals. Systematic studies on the PCL/GO nanocomposite films with varying GO concentrations revealed that the reinforcing effect of GO on PCL was due to the strong interfacial interactions between the two phases characterized by Fourier transform infrared spectroscopy, the good dispersion of GO in the matrix and the intrinsic properties of GO nanoplatelets. The strong and bioactive PCL/GO nanofibrous membranes with a high porosity have great potential for biomedical applications.

摘要

石墨烯在生物医学领域的应用引起了广泛关注,基于石墨烯的纳米材料在药物输送、生物传感和生物成像等方面被认为是很有前途的候选材料。本文研究了氧化石墨烯(GO)纳米片增强聚己内酯(PCL)电纺纳米纤维和多孔膜的力学性能和生物活性。结果表明,添加 0.3wt%GO 可使 PCL 膜的拉伸强度、模量和断裂能分别提高 95%、66%和 416%,同时提高其在生物矿化过程中的生物活性并保持 94%以上的高孔隙率。力学性能的提高归因于纤维形态的变化和 GO 对 PCL 纳米纤维的增强作用,而生物活性的提高则源于 GO 表面存在的阴离子官能团,这些官能团促进了生物矿化的形成。对不同 GO 浓度的 PCL/GO 纳米复合材料薄膜进行了系统研究,结果表明,GO 对 PCL 的增强作用归因于两相之间的强界面相互作用,这一作用可通过傅里叶变换红外光谱进行表征,GO 在基体中的良好分散以及 GO 纳米片的固有特性也有助于增强作用的实现。具有高强度和生物活性且高孔隙率的 PCL/GO 纳米纤维膜在生物医学领域具有很大的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验