Melo Rafael Leandro Fernandes, Nascimento Dari Dayana, da Silva Aires Francisco Izaias, Simão Neto Francisco, Freire Tiago Melo, Fernandes Bruno Caio Chaves, Fechine Pierre Basílio Almeida, Soares João Maria, Sousa Dos Santos José Cleiton
Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, Fortaleza CEP 60440-554, CE, Brazil.
Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil.
ACS Omega. 2025 Jan 3;10(1):1207-1225. doi: 10.1021/acsomega.4c08669. eCollection 2025 Jan 14.
Manufacturing bioactive materials for drug delivery involves developing materials that interact with biological tissues to release drugs in a controlled and targeted manner. The goal is to optimize therapeutic efficacy and reduce side effects by combining knowledge from materials engineering, biology, and pharmacology. This study presents a detailed bibliometric analysis, exploring the keywords "manufacturing," "bioactive materials," and "drug delivery" to identify and highlight significant advancements in the field. From the Web of Science, 36,504 articles were analyzed, with 171 selected for a deeper analysis, identifying key journals, countries, institutions, and authors. The results highlight the field's interdisciplinary nature, with keywords grouped into four main themes, including regenerative medicine, scaffolds, three-dimensional (3D) printing, bioactive glass, and tissue engineering. Future research in this area will focus on more effective and precise systems using technologies like 3D printing and nanotechnology to enhance the customization and control of drug release, aiming for more efficient and targeted therapies.
制造用于药物递送的生物活性材料涉及开发能与生物组织相互作用,以可控且靶向方式释放药物的材料。目标是通过整合材料工程、生物学和药理学知识来优化治疗效果并减少副作用。本研究进行了详细的文献计量分析,探究“制造”“生物活性材料”和“药物递送”等关键词,以识别并突出该领域的重大进展。从科学网中分析了36504篇文章,挑选出171篇进行深入分析,确定了关键期刊、国家、机构和作者。结果突出了该领域的跨学科性质,关键词分为四个主要主题,包括再生医学、支架、三维(3D)打印、生物活性玻璃和组织工程。该领域未来的研究将聚焦于使用3D打印和纳米技术等更有效、精确的系统,以增强药物释放的定制性和可控性,目标是实现更高效、靶向的治疗。