Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
J Biol Chem. 2011 Nov 11;286(45):39100-15. doi: 10.1074/jbc.M111.230938. Epub 2011 Sep 19.
The mechanism underlying the sensing of varying degrees of physiological folate deficiency, prior to adaptive optimization of cellular folate uptake through the translational up-regulation of folate receptors (FR) is unclear. Because homocysteine, which accumulates intracellularly during folate deficiency, stimulated interactions between heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) and an 18-base FR-α mRNA cis-element that led to increased FR biosynthesis and net up-regulation of FR at cell surfaces, hnRNP-E1 was a plausible candidate sensor of folate deficiency. Accordingly, using purified components, we evaluated the physiological basis whereby L-homocysteine triggered these RNA-protein interactions to stimulate FR biosynthesis. L-homocysteine induced a concentration-dependent increase in RNA-protein binding affinity throughout the range of physiological folate deficiency, which correlated with a proportionate increase in translation of FR in vitro and in cultured human cells. Targeted reduction of newly synthesized hnRNP-E1 proteins by siRNA to hnRNP-E1 mRNA reduced both constitutive and L-homocysteine-induced rates of FR biosynthesis. Furthermore, L-homocysteine covalently bound hnRNP-E1 via multiple protein-cysteine-S-S-homocysteine mixed disulfide bonds within K-homology domains known to interact with mRNA. These data suggest that a concentration-dependent, sequential disruption of critical cysteine-S-S-cysteine bonds by covalently bound L-homocysteine progressively unmasks an underlying RNA-binding pocket in hnRNP-E1 to optimize interaction with FR-α mRNA cis-element preparatory to FR up-regulation. Collectively, such data incriminate hnRNP-E1 as a physiologically relevant, sensitive, cellular sensor of folate deficiency. Because diverse mammalian and viral mRNAs also interact with this RNA-binding domain with functional consequences to their protein expression, homocysteinylated hnRNP-E1 also appears well positioned to orchestrate a novel, nutrition-sensitive (homocysteine-responsive), posttranscriptional RNA operon in folate-deficient cells.
叶酸缺乏程度感应的潜在机制,在通过翻译上调叶酸受体(FR)来适应性优化细胞叶酸摄取之前,尚不清楚。因为同型半胱氨酸在叶酸缺乏时在细胞内积累,它刺激了异质核核糖核蛋白 E1(hnRNP-E1)和 18 碱基 FR-α mRNA 顺式元件之间的相互作用,导致 FR 生物合成增加和细胞表面 FR 的净上调,hnRNP-E1 是叶酸缺乏的合理候选传感器。因此,我们使用纯化的成分评估了 L-同型半胱氨酸触发这些 RNA-蛋白相互作用以刺激 FR 生物合成的生理基础。L-同型半胱氨酸在整个生理叶酸缺乏范围内诱导 RNA-蛋白结合亲和力的浓度依赖性增加,这与体外和培养的人细胞中 FR 翻译的比例增加相关。通过 siRNA 靶向减少新合成的 hnRNP-E1 蛋白,降低了 FR 生物合成的组成型和 L-同型半胱氨酸诱导型速率。此外,L-同型半胱氨酸通过已知与 mRNA 相互作用的 K 同源结构域中的多个蛋白-半胱氨酸-S-S-同型半胱氨酸混合二硫键共价结合到 hnRNP-E1 上。这些数据表明,通过共价结合的 L-同型半胱氨酸,浓度依赖性地、顺序地破坏关键的半胱氨酸-S-S-半胱氨酸键,逐渐揭示 hnRNP-E1 中的潜在 RNA 结合口袋,为 FR-α mRNA 顺式元件的相互作用做好准备,为 FR 的上调做准备。总的来说,这些数据将 hnRNP-E1 作为一种与生理相关的、敏感的、细胞叶酸缺乏传感器。因为多种哺乳动物和病毒 mRNA 也与该 RNA 结合域相互作用,对其蛋白质表达具有功能后果,同型半胱氨酸化的 hnRNP-E1 似乎也能够协调叶酸缺乏细胞中的一种新型、营养敏感(同型半胱氨酸反应性)的转录后 RNA 操纵子。