Suppr超能文献

新型抗菌肽 Penaeidin4-1 在匍匐翦股颖(Agrostis stolonifera L.)中的表达增强了植物对真菌病的抗性。

Expression of a novel antimicrobial peptide Penaeidin4-1 in creeping bentgrass (Agrostis stolonifera L.) enhances plant fungal disease resistance.

机构信息

Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America.

出版信息

PLoS One. 2011;6(9):e24677. doi: 10.1371/journal.pone.0024677. Epub 2011 Sep 12.

Abstract

BACKGROUND

Turfgrass species are agriculturally and economically important perennial crops. Turfgrass species are highly susceptible to a wide range of fungal pathogens. Dollar spot and brown patch, two important diseases caused by fungal pathogens Sclerotinia homoecarpa and Rhizoctonia solani, respectively, are among the most severe turfgrass diseases. Currently, turf fungal disease control mainly relies on fungicide treatments, which raises many concerns for human health and the environment. Antimicrobial peptides found in various organisms play an important role in innate immune response.

METHODOLOGY/PRINCIPAL FINDINGS: The antimicrobial peptide - Penaeidin4-1 (Pen4-1) from the shrimp, Litopenaeus setiferus has been reported to possess in vitro antifungal and antibacterial activities against various economically important fungal and bacterial pathogens. In this study, we have studied the feasibility of using this novel peptide for engineering enhanced disease resistance into creeping bentgrass plants (Agrostis stolonifera L., cv. Penn A-4). Two DNA constructs were prepared containing either the coding sequence of a single peptide, Pen4-1 or the DNA sequence coding for the transit signal peptide of the secreted tobacco AP24 protein translationally fused to the Pen4-1 coding sequence. A maize ubiquitin promoter was used in both constructs to drive gene expression. Transgenic turfgrass plants containing different DNA constructs were generated by Agrobacterium-mediated transformation and analyzed for transgene insertion and expression. In replicated in vitro and in vivo experiments under controlled environments, transgenic plants exhibited significantly enhanced resistance to dollar spot and brown patch, the two major fungal diseases in turfgrass. The targeting of Pen4-1 to endoplasmic reticulum by the transit peptide of AP24 protein did not significantly impact disease resistance in transgenic plants.

CONCLUSION/SIGNIFICANCE: Our results demonstrate the effectiveness of Pen4-1 in a perennial species against fungal pathogens and suggest a potential strategy for engineering broad-spectrum fungal disease resistance in crop species.

摘要

背景

草坪草种是具有重要经济价值的农业多年生作物。草坪草种极易受到多种真菌病原体的侵害。由真菌病原体核盘菌和立枯丝核菌分别引起的褐斑病和币斑病是最严重的草坪病害之一。目前,草坪真菌病害的防治主要依赖于杀菌剂处理,这引起了人们对人类健康和环境的诸多关注。各种生物体中发现的抗菌肽在先天免疫反应中起着重要作用。

方法/主要发现:来自虾类凡纳滨对虾的抗菌肽-Penaeidin4-1(Pen4-1)已被报道具有体外抗真菌和抗细菌活性,可对抗各种具有经济重要性的真菌和细菌病原体。在这项研究中,我们研究了使用这种新型肽将增强的抗病性工程导入匍匐翦股颖植物(Agrostis stolonifera L.,cv.Penn A-4)的可行性。制备了两个 DNA 构建体,一个含有单个肽 Pen4-1 的编码序列,另一个含有翻译融合到 Pen4-1 编码序列的分泌烟草 AP24 蛋白的转导信号肽的编码序列。两个构建体都使用玉米泛素启动子来驱动基因表达。通过农杆菌介导的转化生成含有不同 DNA 构建体的转基因草坪植物,并分析其转基因插入和表达。在受控环境下进行的重复体外和体内实验中,转基因植物表现出对褐斑病和币斑病这两种草坪主要真菌病害的显著增强的抗性。AP24 蛋白的转导肽将 Pen4-1 靶向内质网并没有显著影响转基因植物的抗病性。

结论/意义:我们的结果证明了 Pen4-1 在多年生植物中对真菌病原体的有效性,并提出了一种在作物物种中工程广谱真菌病抗性的潜在策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/880b/3171467/4e0198139558/pone.0024677.g001.jpg

相似文献

3
RNA-Seq analysis of the Sclerotinia homoeocarpa--creeping bentgrass pathosystem.
PLoS One. 2012;7(8):e41150. doi: 10.1371/journal.pone.0041150. Epub 2012 Aug 8.
4
Brachypodium: A Potential Model Host for Fungal Pathogens of Turfgrasses.
Phytopathology. 2017 Jun;107(6):749-757. doi: 10.1094/PHYTO-08-16-0318-R. Epub 2017 Apr 12.
5
Mapping QTL for dollar spot resistance in creeping bentgrass (Agrostis stolonifera L.).
Theor Appl Genet. 2006 Nov;113(8):1421-35. doi: 10.1007/s00122-006-0387-y. Epub 2006 Sep 13.
8
Recent developments in metabolomics-based research in understanding transgenic grass metabolism.
Metabolomics. 2019 Mar 15;15(4):47. doi: 10.1007/s11306-019-1507-4.

引用本文的文献

1
Heterologous Production of Antimicrobial Peptides: Notes to Consider.
Protein J. 2024 Apr;43(2):129-158. doi: 10.1007/s10930-023-10174-w. Epub 2024 Jan 5.
4
Proteomics assisted profiling of antimicrobial peptide signatures from black pepper ( L.).
Physiol Mol Biol Plants. 2018 May;24(3):379-387. doi: 10.1007/s12298-018-0524-5. Epub 2018 Apr 3.
5
Control of brown patch (Rhizoctonia solani) in tall fescue (Festuca arundinacea Schreb.) by host induced gene silencing.
Plant Cell Rep. 2016 Apr;35(4):791-802. doi: 10.1007/s00299-015-1921-7. Epub 2016 Jan 22.
6
Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops.
Protoplasma. 2016 May;253(3):691-707. doi: 10.1007/s00709-015-0905-3. Epub 2015 Dec 10.
7
Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance.
Front Plant Sci. 2015 Oct 27;6:900. doi: 10.3389/fpls.2015.00900. eCollection 2015.
9
De-novo design of antimicrobial peptides for plant protection.
PLoS One. 2013 Aug 12;8(8):e71687. doi: 10.1371/journal.pone.0071687. eCollection 2013.
10
Antimicrobial peptides: versatile biological properties.
Int J Pept. 2013;2013:675391. doi: 10.1155/2013/675391. Epub 2013 Jun 26.

本文引用的文献

1
2
Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.).
Plant Cell Environ. 2010 Feb;33(2):272-89. doi: 10.1111/j.1365-3040.2009.02080.x. Epub 2009 Nov 17.
3
Acquired resistance to the rice blast in transgenic rice accumulating the antimicrobial peptide thanatin.
Transgenic Res. 2010 Jun;19(3):415-24. doi: 10.1007/s11248-009-9320-x. Epub 2009 Sep 27.
4
Expression of a plant defensin in rice confers resistance to fungal phytopathogens.
Transgenic Res. 2010 Jun;19(3):373-84. doi: 10.1007/s11248-009-9315-7. Epub 2009 Aug 19.
7
Involvement of the pepper antimicrobial protein CaAMP1 gene in broad spectrum disease resistance.
Plant Physiol. 2008 Oct;148(2):1004-20. doi: 10.1104/pp.108.123836. Epub 2008 Aug 1.
10
Tricine-SDS-PAGE.
Nat Protoc. 2006;1(1):16-22. doi: 10.1038/nprot.2006.4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验