Suppr超能文献

利用压缩感知技术加速小鼠心脏 cine-MR 成像。

Accelerating cine-MR imaging in mouse hearts using compressed sensing.

机构信息

Institute of Radiology, University of Würzburg, Würzburg, Germany.

出版信息

J Magn Reson Imaging. 2011 Nov;34(5):1072-9. doi: 10.1002/jmri.22718. Epub 2011 Sep 19.

Abstract

PURPOSE

To combine global cardiac function imaging with compressed sensing (CS) in order to reduce scan time and to validate this technique in normal mouse hearts and in a murine model of chronic myocardial infarction.

MATERIALS AND METHODS

To determine the maximally achievable acceleration factor, fully acquired cine data, obtained in sham and chronically infarcted (MI) mouse hearts were 2-4-fold undersampled retrospectively, followed by CS reconstruction and blinded image segmentation. Subsequently, dedicated CS sampling schemes were implemented at a preclinical 9.4 T magnetic resonance imaging (MRI) system, and 2- and 3-fold undersampled cine data were acquired in normal mouse hearts with high temporal and spatial resolution.

RESULTS

The retrospective analysis demonstrated that an undersampling factor of three is feasible without impairing accuracy of cardiac functional parameters. Dedicated CS sampling schemes applied prospectively to normal mouse hearts yielded comparable left-ventricular functional parameters, and intra- and interobserver variability between fully and 3-fold undersampled data.

CONCLUSION

This study introduces and validates an alternative means to speed up experimental cine-MRI without the need for expensive hardware.

摘要

目的

将心脏功能整体成像与压缩感知(CS)相结合,以缩短扫描时间,并在正常小鼠心脏和慢性心肌梗死小鼠模型中验证该技术。

材料与方法

为确定最大可实现的加速因子,对假手术和慢性梗死(MI)小鼠心脏的全采集电影数据进行了 2-4 倍的回顾性欠采样,随后进行 CS 重建和盲法图像分割。随后,在临床前 9.4 T 磁共振成像(MRI)系统上实施了专用 CS 采样方案,并在具有高时间和空间分辨率的正常小鼠心脏中采集了 2 倍和 3 倍欠采样的电影数据。

结果

回顾性分析表明,在不影响心脏功能参数准确性的情况下,三分之一的欠采样因子是可行的。前瞻性应用于正常小鼠心脏的专用 CS 采样方案得出了可比的左心室功能参数,以及完全和 3 倍欠采样数据之间的观察者内和观察者间的可变性。

结论

本研究介绍并验证了一种替代方法,可在不使用昂贵硬件的情况下加速实验性电影-MRI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadc/3261377/a98748588258/jmri0034-1072-f1.jpg

相似文献

1
Accelerating cine-MR imaging in mouse hearts using compressed sensing.
J Magn Reson Imaging. 2011 Nov;34(5):1072-9. doi: 10.1002/jmri.22718. Epub 2011 Sep 19.
3
Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction.
NMR Biomed. 2013 Apr;26(4):451-7. doi: 10.1002/nbm.2883. Epub 2012 Oct 29.
5
Application of kt-BLAST acceleration to reduce cardiac MR imaging time in healthy and infarcted mice.
MAGMA. 2014 Jun;27(3):201-10. doi: 10.1007/s10334-013-0392-5. Epub 2013 Jul 9.
6
Development of Real-Time Magnetic Resonance Imaging of Mouse Hearts at 9.4 Tesla--Simulations and First Application.
IEEE Trans Med Imaging. 2016 Mar;35(3):912-20. doi: 10.1109/TMI.2015.2501832. Epub 2015 Nov 19.
7
Accelerating three-dimensional molecular cardiovascular MR imaging using compressed sensing.
J Magn Reson Imaging. 2012 Dec;36(6):1362-71. doi: 10.1002/jmri.23763. Epub 2012 Aug 3.
8
Comparison of segmentation methods for MRI measurement of cardiac function in rats.
J Magn Reson Imaging. 2010 Oct;32(4):869-77. doi: 10.1002/jmri.22305.
10
Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function.
J Magn Reson Imaging. 2016 Aug;44(2):366-74. doi: 10.1002/jmri.25162. Epub 2016 Jan 20.

引用本文的文献

1
Cardiovascular magnetic resonance imaging for sequential assessment of cardiac fibrosis in mice: technical advancements and reverse translation.
Am J Physiol Heart Circ Physiol. 2024 Jan 1;326(1):H1-H24. doi: 10.1152/ajpheart.00437.2023. Epub 2023 Nov 3.
2
Measuring cardiomyocyte cellular characteristics in cardiac hypertrophy using diffusion-weighted MRI.
Magn Reson Med. 2023 Nov;90(5):2144-2157. doi: 10.1002/mrm.29775. Epub 2023 Jun 22.
5
Feasibility of contrast-enhanced coronary artery magnetic resonance angiography using compressed sensing.
J Cardiovasc Magn Reson. 2020 Feb 13;22(1):15. doi: 10.1186/s12968-020-0601-0.
7
Quantitative 3D dynamic contrast-enhanced (DCE) MR imaging of carotid vessel wall by fast T1 mapping using Multitasking.
Magn Reson Med. 2019 Apr;81(4):2302-2314. doi: 10.1002/mrm.27553. Epub 2018 Oct 28.
9
Three-dimensional self-gated cardiac MR imaging for the evaluation of myocardial infarction in mouse model on a 3T clinical MR system.
PLoS One. 2017 Dec 7;12(12):e0189286. doi: 10.1371/journal.pone.0189286. eCollection 2017.

本文引用的文献

5
Multiple-mouse MRI with multiple arrays of receive coils.
Magn Reson Med. 2010 Mar;63(3):803-10. doi: 10.1002/mrm.22236.
7
Optimization of k-space trajectories for compressed sensing by Bayesian experimental design.
Magn Reson Med. 2010 Jan;63(1):116-26. doi: 10.1002/mrm.22180.
8
Radial k-t FOCUSS for high-resolution cardiac cine MRI.
Magn Reson Med. 2010 Jan;63(1):68-78. doi: 10.1002/mrm.22172.
9
k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI.
Magn Reson Med. 2009 Jan;61(1):103-16. doi: 10.1002/mrm.21757.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验