Suppr超能文献

应用扩散加权 MRI 测量心肌肥厚中的心肌细胞特征。

Measuring cardiomyocyte cellular characteristics in cardiac hypertrophy using diffusion-weighted MRI.

机构信息

Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.

Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.

出版信息

Magn Reson Med. 2023 Nov;90(5):2144-2157. doi: 10.1002/mrm.29775. Epub 2023 Jun 22.

Abstract

PURPOSE

This paper presents a hierarchical modeling approach for estimating cardiomyocyte major and minor diameters and intracellular volume fraction (ICV) using diffusion-weighted MRI (DWI) data in ex vivo mouse hearts.

METHODS

DWI data were acquired on two healthy controls and two hearts 3 weeks post transverse aortic constriction (TAC) using a bespoke diffusion scheme with multiple diffusion times ( ), q-shells and diffusion encoding directions. Firstly, a bi-exponential tensor model was fitted separately at each diffusion time to disentangle the dependence on diffusion times from diffusion weightings, that is, b-values. The slow-diffusing component was attributed to the restricted diffusion inside cardiomyocytes. ICV was then extrapolated at using linear regression. Secondly, given the secondary and the tertiary diffusion eigenvalue measurements for the slow-diffusing component obtained at different diffusion times, major and minor diameters were estimated assuming a cylinder model with an elliptical cross-section (ECS). High-resolution three-dimensional synchrotron X-ray imaging (SRI) data from the same specimen was utilized to evaluate the biophysical parameters.

RESULTS

Estimated parameters using DWI data were (control 1/control 2 vs. TAC 1/TAC 2): major diameter-17.4 m/18.0 m versus 19.2 m/19.0 m; minor diameter-10.2 m/9.4 m versus 12.8 m/13.4 m; and ICV-62%/62% versus 68%/47%. These findings were consistent with SRI measurements.

CONCLUSION

The proposed method allowed for accurate estimation of biophysical parameters suggesting cardiomyocyte diameters as sensitive biomarkers of hypertrophy in the heart.

摘要

目的

本研究提出了一种分层建模方法,用于使用离体小鼠心脏的扩散加权 MRI(DWI)数据估计心肌细胞的长轴和短轴直径以及细胞内体积分数(ICV)。

方法

使用具有多个扩散时间( )、q-壳和扩散编码方向的定制扩散方案,在两名健康对照者和两名心脏横断主动脉缩窄(TAC)后 3 周的心脏中采集 DWI 数据。首先,在每个扩散时间处分别拟合双指数张量模型,以解耦扩散时间和扩散加权之间的依赖关系,即 b 值。慢扩散分量归因于心肌细胞内的受限扩散。然后,使用线性回归在 处外推 ICV。其次,鉴于在不同扩散时间获得的慢扩散分量的次要和三级扩散特征值测量值,假设具有椭圆形横截面(ECS)的圆柱模型来估计长轴和短轴直径。利用来自同一标本的高分辨率三维同步加速器 X 射线成像(SRI)数据来评估生物物理参数。

结果

使用 DWI 数据估计的参数为(对照 1/对照 2 与 TAC 1/TAC 2):长轴直径-17.4μm/18.0μm 与 19.2μm/19.0μm;短轴直径-10.2μm/9.4μm 与 12.8μm/13.4μm;和 ICV-62%/62% 与 68%/47%。这些发现与 SRI 测量结果一致。

结论

所提出的方法允许准确估计生物物理参数,表明心肌细胞直径是心脏肥大的敏感生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7b/10962572/e422f0cb6a88/MRM-90-2144-g003.jpg

相似文献

1
Measuring cardiomyocyte cellular characteristics in cardiac hypertrophy using diffusion-weighted MRI.
Magn Reson Med. 2023 Nov;90(5):2144-2157. doi: 10.1002/mrm.29775. Epub 2023 Jun 22.
2
Assessing Myocardial Microstructure With Biophysical Models of Diffusion MRI.
IEEE Trans Med Imaging. 2021 Dec;40(12):3775-3786. doi: 10.1109/TMI.2021.3097907. Epub 2021 Nov 30.
3
Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance: implications for early cardiac remodeling.
Circulation. 2013 Sep 10;128(11):1225-33. doi: 10.1161/CIRCULATIONAHA.112.000438. Epub 2013 Aug 2.
5
Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases.
Neuroimage Clin. 2014 Nov 29;7:142-54. doi: 10.1016/j.nicl.2014.11.017. eCollection 2015.
7
Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI.
PLoS One. 2020 Nov 12;15(11):e0241996. doi: 10.1371/journal.pone.0241996. eCollection 2020.
8
Evaluation of non-Gaussian diffusion in cardiac MRI.
Magn Reson Med. 2017 Sep;78(3):1174-1186. doi: 10.1002/mrm.26466. Epub 2016 Sep 26.
9
Diffusion magnetic resonance imaging for kidney cyst volume quantification and non-cystic tissue characterisation in ADPKD.
Eur Radiol. 2023 Sep;33(9):6009-6019. doi: 10.1007/s00330-023-09601-4. Epub 2023 Apr 5.
10

引用本文的文献

1
Characterization of anthracycline-induced cardiotoxicity by diffusion tensor magnetic resonance imaging.
Basic Res Cardiol. 2025 Feb;120(1):57-69. doi: 10.1007/s00395-024-01039-z. Epub 2024 Mar 14.

本文引用的文献

1
Assessing Myocardial Microstructure With Biophysical Models of Diffusion MRI.
IEEE Trans Med Imaging. 2021 Dec;40(12):3775-3786. doi: 10.1109/TMI.2021.3097907. Epub 2021 Nov 30.
2
SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI.
Neuroimage. 2021 Aug 15;237:118183. doi: 10.1016/j.neuroimage.2021.118183. Epub 2021 May 19.
5
Distinct Phenotypes Induced by Three Degrees of Transverse Aortic Constriction in Mice.
Sci Rep. 2019 Apr 10;9(1):5844. doi: 10.1038/s41598-019-42209-7.
6
Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding.
Magn Reson Med. 2019 Jul;82(1):395-410. doi: 10.1002/mrm.27714. Epub 2019 Mar 13.
7
Searching for the neurite density with diffusion MRI: Challenges for biophysical modeling.
Hum Brain Mapp. 2019 Jun 1;40(8):2529-2545. doi: 10.1002/hbm.24542. Epub 2019 Feb 25.
9
On modeling.
Magn Reson Med. 2018 Jun;79(6):3172-3193. doi: 10.1002/mrm.27101. Epub 2018 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验