Suppr超能文献

通过亚克隆开关信号控制主导亚克隆以管理癌症进展和治疗后复发:对新疗法的启示。

Control dominating subclones for managing cancer progression and posttreatment recurrence by subclonal switchboard signal: implication for new therapies.

出版信息

Stem Cells Dev. 2012 Mar 1;21(4):503-6. doi: 10.1089/scd.2011.0267. Epub 2011 Nov 2.

Abstract

In contrast to hematological malignancies, meaningful improvements in survival statistics for patients with malignant brain tumors have not been realized in >40 years of clinical research. Clearly, a new medical approach to brain cancers is needed. Recent research has led to a new concept that needs to destroy all cancer subclones to control the cancer progression. However, this new concept fails to distinguish the difference between dominating subclones and dormant subclones. Here, we address the issue of clonal switch and emphasize that there may be one or more than one dominant clones within the tumor mass at any time. Destructing one dominant clone triggers activating other dormant subclones to become dominating subclones, causing cancer progress and post-treatment cancer recurrence. We postulate the concept of subclonal switchboard signaling and the pathway that involved in this process. In the context of stem cell and development, there is a parallel with the concept of quiescent/dormant cancer stem cells (CSC) and their progeny, the differentiated cancer cells; these 2 populations communicate and co-exist. The mechanism with which determines to extend self-renewal and expansion of CSC is needed to elucidate. We suggest eliminating the "dominating subclonal switchboard signals" that shift the dormant subclones to dominating subclones as a new strategy.

摘要

与血液系统恶性肿瘤相比,在 >40 年的临床研究中,恶性脑肿瘤患者的生存统计数据并没有得到实质性改善。显然,需要一种新的针对脑癌的医疗方法。最近的研究产生了一个新概念,即需要摧毁所有癌症亚克隆来控制癌症进展。然而,这一新概念未能区分优势亚克隆和休眠亚克隆之间的区别。在这里,我们解决了克隆转换的问题,并强调在任何时候肿瘤内可能存在一个或多个优势克隆。破坏一个优势克隆会触发其他休眠亚克隆激活成为优势克隆,导致癌症进展和治疗后癌症复发。我们提出了亚克隆转换板信号的概念以及涉及该过程的途径。在干细胞和发育的背景下,与静止/休眠癌症干细胞(CSC)及其后代分化的癌细胞的概念相平行;这两个群体相互交流并共存。需要阐明决定 CSC 自我更新和扩增的扩展的机制。我们建议消除将休眠亚克隆转变为优势克隆的“优势亚克隆转换板信号”,以此作为一种新策略。

相似文献

2
Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.
PLoS One. 2015 Aug 18;10(8):e0135760. doi: 10.1371/journal.pone.0135760. eCollection 2015.
3
Cancer stem cells and the biology of brain tumors.
Curr Stem Cell Res Ther. 2009 Dec;4(4):306-13. doi: 10.2174/157488809789649214.
4
Glioblastoma cancer stem cells--from concept to clinical application.
Cancer Lett. 2013 Sep 10;338(1):32-40. doi: 10.1016/j.canlet.2012.05.033. Epub 2012 Jun 2.
5
The evidence of glioblastoma heterogeneity.
Sci Rep. 2015 Jan 27;5:7979. doi: 10.1038/srep07979.
6
The Importance of Tumor Stem Cells in Glioblastoma Resistance to Therapy.
Int J Mol Sci. 2021 Apr 8;22(8):3863. doi: 10.3390/ijms22083863.
7
Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated Tumor Cells Promotes Malignant Progression.
Cell Stem Cell. 2018 Apr 5;22(4):514-528.e5. doi: 10.1016/j.stem.2018.03.011.
8
Tumor dormancy and cancer stem cells: two sides of the same coin?
Adv Exp Med Biol. 2013;734:145-79. doi: 10.1007/978-1-4614-1445-2_8.
9
Tumour stem cell-targeted treatment: elimination or differentiation.
Ann Oncol. 2006 Nov;17(11):1620-4. doi: 10.1093/annonc/mdl074. Epub 2006 May 3.
10
Targeting stem cells in brain tumors.
Technol Cancer Res Treat. 2006 Jun;5(3):251-60. doi: 10.1177/153303460600500312.

引用本文的文献

3
Metronomic chemotherapy in cancer treatment: new wine in an old bottle.
Theranostics. 2024 Jun 1;14(9):3548-3564. doi: 10.7150/thno.95619. eCollection 2024.
4
Mastering the craft: Creating an insightful and widely-cited literature review.
World J Stem Cells. 2023 Aug 26;15(8):781-786. doi: 10.4252/wjsc.v15.i8.781.
7
Metronomic chemotherapy in patients with advanced neuroendocrine tumors: A single-center retrospective analysis.
J Neuroendocrinol. 2022 Oct;34(10):e13189. doi: 10.1111/jne.13189. Epub 2022 Aug 16.
8
Molecular Characterization of Differentiated-Resistance MSC Subclones by Single-Cell Transcriptomes.
Front Cell Dev Biol. 2022 Mar 9;10:699144. doi: 10.3389/fcell.2022.699144. eCollection 2022.
9
Ectosome biogenesis and release processes observed by using live-cell dynamic imaging in mammalian glial cells.
Quant Imaging Med Surg. 2021 Nov;11(11):4604-4616. doi: 10.21037/qims-20-1015.

本文引用的文献

1
Evolution of tumor invasiveness: the adaptive tumor microenvironment landscape model.
Cancer Res. 2011 Oct 15;71(20):6327-37. doi: 10.1158/0008-5472.CAN-11-0304. Epub 2011 Aug 22.
2
Increase developmental plasticity of human keratinocytes with gene suppression.
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12793-8. doi: 10.1073/pnas.1100509108. Epub 2011 Jul 18.
3
Forty years on from Nixon's war, cancer research 'evolves'.
Nat Med. 2011 Jul 7;17(7):757. doi: 10.1038/nm0711-757.
4
Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling.
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10544-9. doi: 10.1073/pnas.1107807108. Epub 2011 Jun 13.
5
6
The p53 tumor suppressor protein regulates hematopoietic stem cell fate.
J Cell Physiol. 2011 Sep;226(9):2215-21. doi: 10.1002/jcp.22561.
7
Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions.
PLoS One. 2011 Apr 13;6(4):e14790. doi: 10.1371/journal.pone.0014790.
9
Cancer genetics: Initially complex, always heterogeneous.
Nat Rev Genet. 2011 Mar;12(3):154. doi: 10.1038/nrg2965. Epub 2011 Jan 25.
10
Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells.
Nature. 2011 Jan 20;469(7330):362-7. doi: 10.1038/nature09733.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验