Soref Richard, Guo Junpeng, Sun Greg
Department of Physics, University of Massachusetts at Boston, Boston, Massachusetts 02125, USA.
Opt Express. 2011 Sep 12;19(19):18122-34. doi: 10.1364/OE.19.018122.
Electrical, optical and electro-optical simulations are presented for a waveguided, resonant, bus-coupled, p-doped Si micro-donut MOS depletion modulator operating at the 1.55 μm wavelength. To minimize the switching voltage and energy, a high-K dielectric film of HfO₂ or ZrO₂ is chosen as the gate dielectric, while a narrow ring-shaped layer of p-doped poly-silicon is selected for the gate electrode, rather than metal, to minimize plasmonic loss loading of the fundamental TE mode. In a 6-μm-diam high-Q resonator, an infrared intensity extinction ratio of 6 dB is predicted for a modulation voltage of 2 V and a switching energy of 4 fJ/bit. A speed-of-response around 1 ps is anticipated. For a modulator scaled to operate at 1.3 μm, the estimated switching energy is 2.5 fJ/bit.
本文给出了一种工作在1.55μm波长的波导型、谐振型、总线耦合、p型掺杂硅微环MOS耗尽型调制器的电学、光学和电光模拟结果。为了最小化开关电压和能量,选择HfO₂或ZrO₂的高介电常数介电膜作为栅极电介质,而选择p型掺杂多晶硅的窄环形层作为栅电极,而非金属,以最小化基模TE模式的等离子体损耗负载。在一个直径为6μm的高Q谐振器中,预测对于2V的调制电压和4fJ/比特的开关能量,红外强度消光比为6dB。预计响应速度约为1ps。对于按比例缩小以在1.3μm波长工作的调制器,估计的开关能量为2.5fJ/比特。