Zhu Shiyang, Lo G Q, Kwong D L
Institute of Microelectronics, Agency for Science, Technology and Research, 11 Science Park Road, Science Park-II, 117685 Singapore.
Opt Express. 2013 May 20;21(10):12699-712. doi: 10.1364/OE.21.012699.
An ultracompact silicon electro-optic modulator operating at 1550-nm telecom wavelengths is proposed and analyzed theoretically, which consists of a Cu-TiO(2)-Si hybrid plasmonic donut resonator evanescently coupled with a conventional Si channel waveguide. Owing to a negative thermo-optic coefficient of TiO(2) (~-1.8 × 10(-4) K(-1)), the real part of effective modal index of the curved Cu-TiO(2)-Si hybrid waveguide can be temperature-independent (i.e., athermal) if the TiO(2) interlayer and the beneath Si core have a certain thickness ratio. A voltage applied between the ring-shaped Cu cap and a cylinder metal electrode positioned at the center of the donut,--which makes Ohmic contact to Si, induces a ~1-nm-thick free-electron accumulation layer at the TiO(2)/Si interface. The optical field intensity in this thin accumulation layer is significantly enhanced if the accumulation concentration is sufficiently large (i.e., > ~6 × 10(20) cm(-3)), which in turn modulates both the resonance wavelengths and the extinction ratio of the donut resonator simultaneously. For a modulator with the total footprint inclusive electrodes of ~8.6 μm(2), 50-nm-thick TiO(2), and 160-nm-thick Si core, FDTD simulation predicts that it has an insertion loss of ~2 dB, a modulation depth of ~8 dB at a voltage swing of ~6 V, a speed-of-response of ~35 GHz, and a switching energy of ~0.45 pJ/bit, and it is athermal around room temperature. The modulator's performances can be further improved by optimization of the coupling strength between the bus waveguide and the donut resonator.
本文提出并从理论上分析了一种工作在1550 nm电信波长的超紧凑型硅电光调制器,它由一个与传统硅通道波导倏逝耦合的Cu-TiO₂-Si混合等离子体环形谐振器组成。由于TiO₂的负热光系数(约-1.8×10⁻⁴ K⁻¹),如果TiO₂中间层和下方的硅芯具有一定的厚度比,弯曲的Cu-TiO₂-Si混合波导的有效模态折射率实部可以与温度无关(即无热效应)。施加在环形Cu帽和位于环形中心的圆柱金属电极(与硅形成欧姆接触)之间的电压,会在TiO₂/Si界面处诱导出一个约1 nm厚的自由电子积累层。如果积累浓度足够大(即>约6×10²⁰ cm⁻³),该薄积累层中的光场强度会显著增强,进而同时调制环形谐振器的谐振波长和消光比。对于一个包括电极在内总占地面积约为8.6 μm²、TiO₂厚度为50 nm、硅芯厚度为160 nm的调制器,FDTD模拟预测其插入损耗约为2 dB,在约6 V的电压摆幅下调制深度约为8 dB,响应速度约为35 GHz,开关能量约为0.45 pJ/bit,并在室温附近无热效应。通过优化总线波导和环形谐振器之间的耦合强度,调制器的性能可以进一步提高。